Prepare of the New Structure PbTiO3 Nanowires and the Study of the Reversible Bending

Article Preview

Abstract:

When the self-made with Teflon lined with stainless steel reaction kettle is used to produce PbTiO3 nanowires with the adoption of hydrothermal reaction , PbTiO3 nanowires with new structure can be made when Pb/Ti equals 2.2. Observed through the Transmission Electron Microscopy (TEM), the bending feature of the PbTiO3 nanowires can be observed for several times when X-ray diffraction (XRD) and Electron Backscattered Diffraction (EBSD) are used to analyse and test the crystal structure of the nanowires. The result of the study shows that the degree of the bending of the PbTiO3 nanowires varies with the intensity of the electron beam from the Transmission Electron Microscopy, and its process can be reversible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

522-526

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yun, W. S., Urban, J. J., Qian, G. & Park, H. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano. Lett. 2, 447-450 (2002).

DOI: 10.1021/nl015702g

Google Scholar

[2] Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transition in ferroelectric nanodisks and nanorods. Nature 432, 737-740 (2004).

DOI: 10.1038/nature03107

Google Scholar

[3] Fu, H & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys.Rev.Lett. 91, 257601 (2003).

DOI: 10.1103/physrevlett.91.257601

Google Scholar

[4] Haun, M. J., Furman, E., Jang, S. J. & Cross, L. E. Thermodynamic theory of the lead zirconate-titanate solid solution system, part v: theoretical calculations. Ferroelectrics. 99, 63-86 (1989).

DOI: 10.1080/00150198908221440

Google Scholar

[5] Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystal. J. Appl. Phys. 82, 1804-1811 (1997).

DOI: 10.1063/1.365983

Google Scholar

[6] Unchino, K. Pieozelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1996).

Google Scholar

[7] Prosandeyev, S. A., Tarasevich, Y. Y. & Tesleenko, N. M. Lcao calculations of the electronic structure of PbTiO3 and PbZrO3. Ferroelectrics. 131, 137-140 (1992).

DOI: 10.1080/00150199208223404

Google Scholar

[8] Cohen, R. E. & Karkauer, H. Electronic structure studies of the differences in ferroelectric behavior of BaTiO3 and PbTiO3. Ferroelectrics. 136, 65-83 (1992).

Google Scholar

[9] Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136-138 (1992).

DOI: 10.1038/358136a0

Google Scholar

[10] Fong, D. D. et al. Ferroelectricity in ultrathin perovskite film. Science 304, 1650-1653 (2004)

Google Scholar

[11] Bellaiche, L. & Vanderbilt, D. Intrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZT. Phys.Rev.Lett. 83, 1347-1350 (1999).

DOI: 10.1103/physrevlett.83.1347

Google Scholar

[12] Graighead, H. G. Nanoelectromechanical systems. Science 290, 1532-1532 (2000)

Google Scholar

[13] Polli, A. D., Lange, F. F. & Levi, C. G. Metastability of the fluorite, pyrochlore, and perovskite structure in the PbO-ZrO2-TiO2 system. J. Am. Ceram. Soc. 83, 873-881 (2000).

DOI: 10.1111/j.1151-2916.2000.tb01288.x

Google Scholar

[14] Seifert, A., Lange, F. F. & Speck, J. S. Epitaxial growth of PbTiO3 thin film in (001) SrTiO3 from solution precursors. J. Mater. Res. 10, 680-691 (1995).

DOI: 10.1557/jmr.1995.0680

Google Scholar

[15] Gotthard, S. S., Cohen, R. E. & Krakauer, H. First-principles study of piezoelectricity in PbTiO3. Phys.Rev.Lett. 80, 4321-4324 (1998).

Google Scholar