[1]
Derek Hull. Trans by Li Xiaogang, Dong Chaofang, Du Cuiwei, et al. Fractography: observing, measuring, and interpreting fracture surface topography[M]. Beijing:Science Press,2009: 282-287.
Google Scholar
[2]
Zhong Qun peng, Zhao Zi hua. Fractography[M]. Beijing: High Education Press, 2006:260-290.
Google Scholar
[3]
N. Ohtsuka, T. Kobayashi, K. Watashi, et al. Application of fracture surface topographic analysis technique to thermal fatigue crack extension in stainless steel vessel[J]. Engineering Fracture Mechanics,1994(49),6: 859-869.
DOI: 10.1016/0013-7944(94)90021-3
Google Scholar
[4]
F. Liu, S. H. Ai, Y. C. Wang, et al. Thermal-mechanical fatigue behavior of a cast K417 nickel-based superalloy[J] . International Journal of Fatigue,2002(24),8: 841-846.
DOI: 10.1016/s0142-1123(02)00010-5
Google Scholar
[5]
Lih-Jier Young. Lifetime evaluation of cracked shaft sleeve of reactor coolant pump under thermal striping[J].International Journal of Solids and Structures, 2001(38), 46-47: 8345-8358.
DOI: 10.1016/s0020-7683(01)00116-0
Google Scholar
[6]
Lars Jacobsson, Christer Persson, Solveig Melin. Thermo-mechanical fatigue crack propagation experiments in Inconel 718[J] . International Journal of Fatigue, 2009(31), 8-9:1318-1326.
DOI: 10.1016/j.ijfatigue.2009.02.041
Google Scholar
[7]
K. Slámečka, J. Pokluda, P. Ponížil, et al. On the topography of fracture surfaces in bending-torsion fatigue. Engineering Fracture Mechanics,2008(75),3-4:760-767.
DOI: 10.1016/j.engfracmech.2007.01.018
Google Scholar
[8]
J Shyam, W. W. Milligan. Effects of deformation behavior on fatigue fracture surface morphology in a nickel-base superalloy[J]. Acta Materialia, 2004(52),6:1503-1513.
DOI: 10.1016/j.actamat.2003.11.032
Google Scholar
[9]
Chen Chuan yao. Fatigue and fracture[M].Wuhan:Huazhong University of Science & Technology Press,2005:12-14.
Google Scholar
[10]
Zhong Qun peng, Zhao Zi hua, Zhang Zheng. Development of fractography and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005(27),3 :358-370.
Google Scholar
[11]
Liu Xin ling, Zhang Zheng, Tao Chun hu. Fatigue fractography quantitative analysis[M]. Beijing: National Defense Industry Press, 2010:60-99.
Google Scholar
[12]
Tang Qi de, Miao Xing. Some damage patterns and their causes of desuperheaters in heat power equipments of thermal power plant[J]. Thermal Power Generation, 2001,2:52-56.
Google Scholar
[13]
Li Xian bing. Analysis of reasons and improvement of spray type desuperheaters of boiler in 300MW unit[J]. Thermal Power Generation, 2009(38),7:55-56.
Google Scholar
[14]
Deng Jian, Luo Yong hao, Lu Fang, et al. Safety and reliability analysis of spray desuperheaters of 1025t/h boiler[J]. Boiler Technology, 2007(38),3:7-9.
Google Scholar
[15]
Jiang Ming xing, Chen Guo hua, Liao Jing yu. Failure analysis and countermeasures for outlet-pipe and inlet-pipe in desuperheater[J]. Pressure Vessel Technology, 2010(27),9:38-41.
Google Scholar
[16]
Jiang Qiu zhi, Wang Jin rui. Manual of metal material used in coal-fired power plants[M]. Beijing: China Electric Power Press, 2001:139-159.
Google Scholar
[17]
Chinese Aeronautical Establishment. Manual of stress intensity factors[M]. Beijing: Science Press, 1993:380.
Google Scholar
[18]
Ye Jing. The research of propagation rules of fatigue cracks of steel 2.25Cr1Mo and steel 2.25Cr1MoV in high temperature[J]. Chemical Equipment Technology, 2006(27),1:49-53.
Google Scholar