Dynamic Analysis of a Micro-Cantilever Subjected to Harmonic Base Excitation via RVIM

Article Preview

Abstract:

In this paper, dynamic analysis of a cantilever beam with micro-scale dimensions is presented. The micro-cantilever is subjected to harmonic base excitation and constant force at micro-cantilever tip. By Euler-Bernoulli beam theory assumptions, the mathematical formulation of vibrating micro-cantilever beam is derived using extended Hamilton principle. The governing partial-diffrential equation is solved by reconstruction of variational iteration method (RVIM), with possession of its boundary conditions. The RVIM is an approximate method of solving that answers easy and quick and has high accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

545-550

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] D.L. Polla, E. Erdman, W.P. Robbins, D.T. Markus, J.D. Diaz, R. Rinz, Y. Nam, H.T. Brickner, Microdevices in Medicine. Ann. Rev. Biomed. Eng., 2 (2000) 551-576.

DOI: 10.1146/annurev.bioeng.2.1.551

Google Scholar

[3] G.H. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay of prostate specific antigen (PSA) using microcantilever. Nat. Biotechnol., 19 (2001) 856-860.

DOI: 10.1038/nbt0901-856

Google Scholar

[4] Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer, M. Hegner, C. Gerber, Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology, 14 (2003) 86-90.

DOI: 10.1088/0957-4484/14/1/319

Google Scholar

[5] A. Subramanian, P.I. Oden, S.J. Kennel, K.B. Jacobson, R.J. Warmack, T. Thundat, M.J. Doktycz, Glucose biosensing using an enzyme-coated microcantilever. Appl. Phys. Lett. 81 (2002) 385-387.

DOI: 10.1063/1.1492308

Google Scholar

[6] A. Bahrami, A.N. Nayfeh, Nonlinear dynamics of tapping mode atomic force microscopy in the bistable phase, Commun. Nonlinear Sci. Numer. Simulat. 18 (2013) 799–810.

DOI: 10.1016/j.cnsns.2012.08.021

Google Scholar

[7] M.H. Korayem, A. Kavousi, N. Ebrahimi, Dynamic analysis of tapping-mode AFM considering capillary force interactions, Sci. Iran. 18(1) (2011) 121-129.

DOI: 10.1016/j.scient.2011.03.014

Google Scholar

[8] J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comp. Method. in Appl. Mech. Eng. 167 (1998) 57-68.

DOI: 10.1016/s0045-7825(98)00108-x

Google Scholar

[9] J.H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comp. Method. in Appl. Mech. Eng. 167 (1998) 69–73.

DOI: 10.1016/s0045-7825(98)00109-1

Google Scholar

[10] E. Hesameddini, H. Latifizadeh, Reconstruction of variational iteration algorithms using the laplace transform, Int. J. Nonlin. Sci. Num., 10 (2009) 1377–1382.

DOI: 10.1515/ijnsns.2009.10.11-12.1377

Google Scholar

[11] A.A. Imani, D.D. Ganji, H.B. Rokni, H. Latifizadeh, E. Hesameddini, M.H. Rafiee, Approximate traveling wave solution for shallow water wave equation, Appl. Math. Model., 36 (2012) 1550-1557.

DOI: 10.1016/j.apm.2011.09.030

Google Scholar

[12] S.I. Lee, S.W. Howell, A. Raman R. Reifenberger, Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy, 97 (2003) 185-198.

DOI: 10.1016/s0304-3991(03)00043-3

Google Scholar