[1]
Kikutani Y, Hisamoto H, Tokeshi M, et al, Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network, Lab Chip, vol. 4, pp.328-332, (2004).
DOI: 10.1039/b400233d
Google Scholar
[2]
Choi J. E, Takei M, Doh D. H, Fabrication of Microchannel with 60 Electrodes and Resistance Measurement, Flow measurement and instrumentation, vol. 61, pp.2733-2738, (2010).
DOI: 10.1016/j.flowmeasinst.2010.03.006
Google Scholar
[3]
Reddy V, Zahn J. D, Interfacial stabilization of organic–aqueous two-phase microflows for a miniaturized DNA extraction module, Colloid Interf. Sci, vol. 286, p.158–165, (2005).
DOI: 10.1016/j.jcis.2004.12.052
Google Scholar
[4]
Shui L. L, Eijkel Jan C. T, Albert Vandenberg, Multiphase flow in micro- and nanochannels, Sensors and Actuators, vol. 121, p.263–276, (2007).
DOI: 10.1016/j.snb.2006.09.040
Google Scholar
[5]
Kaban'kov O. N, Sevast'yanov A. P, Two-phase flows: a review, Heat Transfer, vol. 31, p.103–122. (2000).
Google Scholar
[6]
Doku G. N, Verboom W, Reinhoudt D. N, On-microchip multiphase chemistry—a review of microreactor design principles and reagent contacting modes, Tetrahedron. Vol. 61, p.2733–2742, (2005).
DOI: 10.1016/j.tet.2005.01.028
Google Scholar
[7]
Tegenfeldt J. O, Prinz C, Cao H, Micro- and nanofluidics for DNA analysis, Anal. Bioanal. Chem, vol. 378, p.1678–1692, 2004.
Google Scholar
[8]
Ichiyanagi M, Sasaki S, Sato Y, Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels, Journal of Micromechanics and Microengineering, vol. 19, pp.1-9, (2009).
DOI: 10.1088/0960-1317/19/4/045021
Google Scholar
[9]
Ricard F, Brechtelsbauer C, Xu X. Y, Monitoring of Multiphase Pharmaceutical Processes Using Electrical Resistance Tomography, Chemical Engineering Research and Design, vol. 83, pp.794-805, (2005).
DOI: 10.1205/cherd.04324
Google Scholar
[10]
Sung Quek, Stephan Mohr, Nick Goddard, Peter Fielden and Trevor York. Miniature Electrical Tomography for MicroFluidic Systems, WCIPT6. pp.1320-1326, (2010).
Google Scholar
[11]
C.J. Grootveld, A. Segal, Regularized modified Newton–Raphson technique applied to electrical impedance tomography, Int. J. Imag. Syst. Technol., vol. 9, p.60–65, (1998).
DOI: 10.1002/(sici)1098-1098(1998)9:1<60::aid-ima8>3.0.co;2-p
Google Scholar
[12]
M. Wang, Inverse solutions for electrical impedance tomography based on conjugate gradients methods, Meas. Sci. Technol. Vol. 13, p.101–117, (2002).
DOI: 10.1088/0957-0233/13/1/314
Google Scholar
[13]
W.Q. Yang, L. Peng, Image reconstruction algorithms for electrical capacitance tomography, Meas. Sci. Technol, vol. 14, p.1–13, (2003).
DOI: 10.1088/0957-0233/14/1/201
Google Scholar
[14]
A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, Monodisperse double emulsions generated from a microcapillary device, Science, vol. 308, p.537–541, (2005).
DOI: 10.1126/science.1109164
Google Scholar