On the Adjacent Vertex Distinguishing Proper Edge Colorings of Several Classes of Complete 5-Partite Graphs

Article Preview

Abstract:

A proper $k$-edge coloring of a graph $G$ is an assignment of $k$ colors, $1,2,\cdots,k$, to edges of $G$. For a proper edge coloring $f$ of $G$ and any vertex $x$ of $G$, we use $S(x)$ denote the set of thecolors assigned to the edges incident to $x$. If for any two adjacent vertices $u$ and $v$ of $G$, we have $S(u)\neq S(v)$,then $f$ is called the adjacent vertex distinguishing proper edge coloring of $G$ (or AVDPEC of $G$ in brief). The minimum number of colors required in an AVDPEC of $G$ is called the adjacent vertex distinguishing proper edge chromatic number of $G$, denoted by $\chi^{'}_{\mathrm{a}}(G)$. In this paper, adjacent vertex distinguishing proper edge chromatic numbers of several classes of complete 5-partite graphs are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1452-1455

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. C. Burris and R. H. Schelp. Vertex-distinguishing proper edge-colorings: J. Graph Theory, Vol. 26 (1997), pp.73-82.

DOI: 10.1002/(sici)1097-0118(199710)26:2<73::aid-jgt2>3.0.co;2-c

Google Scholar

[2] C. Bazgan, A. Harkat-Benhamdine, H. Li and M. Woźniak. On the vertex-distinguishing proper edge-coloring of graphs: J. Combin Theory(Ser B) , Vol. 75 (1999), pp.288-301.

DOI: 10.1006/jctb.1998.1884

Google Scholar

[3] P. N. Balister, B. Bollob\'{a}s and R. H. Schelp. Vertex-distinguishing coloring of graphs with : Discrete Mathematics, Vol. 252 (2002), pp.17-29.

DOI: 10.1016/s0012-365x(01)00287-4

Google Scholar

[4] P. N. Balister, O. M. Riordan and R. H. Schelp. Vertex-distinguishing coloring of graphs: J. Graph Theory, Vol. 42 (2003), pp.95-109.

DOI: 10.1002/jgt.10076

Google Scholar

[5] Z. F. Zhang, L. Z. Liu and J. F. Wang. Adjacent strong edge coloring of graphs: Applied Mathematics Letters, Vol. 15 (2002), pp.623-626.

DOI: 10.1016/s0893-9659(02)80015-5

Google Scholar

[6] X. M. Zhao, X. E. Chen and X. S. Liu. On the adjacent strong edge coloring of several class of complete 4-partite graphs: Journal of Northwest Normal University(Natural Science), Vol. 42 (2006), pp.26-29.

Google Scholar

[7] X. E. Chen, C. Y. Ma, F. Yang, B. Yao. On the adjacent vertex distinguishing proper edge colorings of several classes of complete 4-partite and 5-partite graphs: Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13), Published by Atlantis Press, Paris, France, (2013).

DOI: 10.2991/isccca.2013.32

Google Scholar

[8] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications: Macmillan, London and Else- vier, New York, (1976).

Google Scholar