[1]
E. J. Candes and D. L. Donoho: New tight frames of curvelets and optimal representations of objects with piecewise singularities, Comm. Pure and Appl. Math. Vol. 56 (2004), pp.216-266.
DOI: 10.1002/cpa.10116
Google Scholar
[2]
D. Labate, W. Q. Lim, G. Kutyniok and G. Weiss: Sparse multidimensional representation using shearlets, in Wavelets XI(M. Papadakis, A. F. Laine and M. A. Unser, eds. ), SPIE Proc., Vol. 5914 (2005), pp.254-262.
DOI: 10.1117/12.613494
Google Scholar
[3]
K. Guo, G. Kutyniok and D. Labate: Sparse multidimensional representation using anisotropic dilation and shear operators, in Wavelets and splines (G. Chen and M. J. Lai, eds. ), Nashboro Press, Nashville, TN, (2006): 189-201.
Google Scholar
[4]
K. Guo and D. Labate: Optimally sparse multidimensional representations using shearlets, SIAM J. Math. Anal. Vol. 39(2007), pp.298-318.
DOI: 10.1137/060649781
Google Scholar
[5]
I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, (1992).
Google Scholar
[6]
O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser, Boston, (2003).
Google Scholar
[7]
X. G. Zhu and G. C. Wu: A note on some equalities for frames in Hilbert space, Appl. Math. Lett. Vol. 23 (2010), pp.788-790.
DOI: 10.1016/j.aml.2010.03.010
Google Scholar
[8]
G. Kutyniok and D. Labate, Construction of regular and irregular shearlets, J. Wavelet Theory and Appl. Vol. 1(2007), pp.1-10.
Google Scholar
[9]
X. Zhu and G. Wu, A Sufficient Condition for Irregular Shearlet Frame, Applied Mechanics and Materials Vol. 204-208 (2012) pp.774-777.
DOI: 10.4028/www.scientific.net/amm.204-208.774
Google Scholar