[1]
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica. D 60 (1992) 259-268.
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[2]
Bioucas-Dias, J.M., Figueiredo, M.A.T.: Total variation-based image deconvolution: A majorization-minimization approach. in Proc. Int. Conf. Acoustics, Speech and Signal Processing (2006).
DOI: 10.1109/icassp.2006.1660479
Google Scholar
[3]
Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process 16 (2007) 2992-3004.
DOI: 10.1109/tip.2007.909319
Google Scholar
[4]
Wang, Y.L., Yang, J.F., Yin, W.T., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. Siam Journal on Imaging Sciences 1 (2008) 248-272.
DOI: 10.1137/080724265
Google Scholar
[5]
Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. Siam Journal on Imaging Sciences 2 (2009) 323-343.
DOI: 10.1137/080725891
Google Scholar
[6]
Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process 19 (2010) 2345-2356.
DOI: 10.1109/tip.2010.2047910
Google Scholar
[7]
Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph 26 (2007).
DOI: 10.1145/1276377.1276464
Google Scholar
[8]
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. NIPS (2009).
Google Scholar
[9]
Zhang, X.Q., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. Siam Journal on Imaging Sciences 3 (2010) 253-276.
DOI: 10.1137/090746379
Google Scholar
[10]
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process 16 (2007) 2080-(2095).
DOI: 10.1109/tip.2007.901238
Google Scholar
[11]
Bresson, X.: A short note for nonlocal tv minimization (2009).
Google Scholar
[12]
Danielyan, A., Katkovnik, V., Egiazarian, K.: Image deblurring by augmented lagrangian with bm3d frame prior. Proc. WITMSE, Tampere, Finland (2010).
DOI: 10.1109/icip.2011.6116455
Google Scholar
[13]
Danielyan, A., Katkovnik, V., Egiazarian, K.: Bm3d frames and variational image deblurring. IEEE Trans. Image Process 21 (2012) 1715-1728.
DOI: 10.1109/tip.2011.2176954
Google Scholar
[14]
Li, X.: Fine-granularity and spatially-adaptive regularization for projection-based image deblurring. IEEE Trans. Image Process 20 (2011) 971-983.
DOI: 10.1109/tip.2010.2081681
Google Scholar
[15]
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. IEEE CVPR (2005).
DOI: 10.1109/cvpr.2005.38
Google Scholar
[16]
O. Shacham, O. Haik, and Y. Yitzhaky, Blind restoration of atmospherically degraded images by automatic best step-edge detection, Pattern Recognition Letters, vol. 28, no. 15, p.2094–2103, (2007).
DOI: 10.1016/j.patrec.2007.06.006
Google Scholar
[17]
D. Krishnan, T. Tay, and R. Fergus, Blind deconvolution using a normalized sparsity measure, in CVPR. IEEE, (2011).
DOI: 10.1109/cvpr.2011.5995521
Google Scholar