[1]
J. K. Aggarwal and M. S. Ryoo1. Human Activity Analysis: A Review. [C] ACM Computing Surveys (CSUR), 43(3), April (2011).
Google Scholar
[2]
I. Laptev. On space-time interest points. [J] International Journal of Computer Vision, 2005, 64(2): 107-123.
Google Scholar
[3]
P. Dollar, V. Rabaud, G. Cottrell, et al. Behavior recognition via sparse spatio-temporal features. [C] IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, (2005).
DOI: 10.1109/vspets.2005.1570899
Google Scholar
[4]
A. Oikonomopoulos, I. Patras, and M. Pantic. Spatio-temporal salient points for visual recognitoin of human actions. [J] IEEE Trans. Systems, Man and Cybernetics, Part B, 36(3): 710-719, (2006).
DOI: 10.1109/tsmcb.2005.861864
Google Scholar
[5]
P. Scovanner,S. Ali, and M. Shah. A 3-dimensional SIFT descriptor and its application to action recognition. [C] In ACM International Conference on Multimedia, (2007).
DOI: 10.1145/1291233.1291311
Google Scholar
[6]
G. Willems, T. Tuytelaars and L. V. Gool. An efficient dense and scale-invariant spatio-temporal interest point detector. [C] European Conference on Computer Vision, (2008).
DOI: 10.1007/978-3-540-88688-4_48
Google Scholar
[7]
I. Laptev, B. Caputo, C. Schuldt, et al. Local velocity-adapted motion events for spatio-temporal recognition. [J] Computer Vision and Image Understanding, 2007, 108: 207-229.
DOI: 10.1016/j.cviu.2006.11.023
Google Scholar
[8]
A. Klaser, M. Marszalek and C. Schmid. A spatio-temporal descriptor based on 3D-gradients. [C] British Machine Vision Conference, (2008).
DOI: 10.5244/c.22.99
Google Scholar
[9]
C. Schuldt, I. Laptev and B. Caputo. Recognizing human actions: A local SVM approach. [C] Internation Conference on Pattern Recognition, (2004).
DOI: 10.1109/icpr.2004.1334462
Google Scholar
[10]
S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR, (2008).
DOI: 10.1109/cvpr.2008.4587630
Google Scholar
[11]
I. Laptev, M. Marszalek, C. Schmid, et al. Learning realistic human actions from movies. [C] Computer Vision and Pattern Recognition, (2008).
DOI: 10.1109/cvpr.2008.4587756
Google Scholar
[12]
M. J. Swain and D. H. Ballard. Color indexing. [J] International Journal of Computer Vision, 7(1): 11–32, (1991).
Google Scholar
[13]
F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image matching. [J] IEEE Trans. Image Processing, 14(2): 169–180, (2005).
DOI: 10.1109/tip.2004.840701
Google Scholar
[14]
Jianxin Wu , James M. Rehg. Beyond the Euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. [C] 2009 IEEE 12th International Conference on Computer Vision. pp.630-637 , (2009).
DOI: 10.1109/iccv.2009.5459178
Google Scholar
[15]
F. Jurie and B. Triggs. Creating efficient codebooks for visual recognition. [C] In ICCV, volume 1, pages 604–610, (2005).
DOI: 10.1109/iccv.2005.66
Google Scholar