Application on Secure Communication and General Synchronization of a New 4-D Hyperchaotic System

Article Preview

Abstract:

In this paper, a new four-dimensional hyperchaotic system is studied. The basic dynamic behaviors of the system are analyzed by numerical simulation. The bound of the chaotic system is estimated. In addition, a constructive theorem is proposed for nonlinear generalized synchronization related to the chaotic system. Example is presented for illustrating our methods and an application in secure communication is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1781-1785

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Leonov, A. Bunin, N. Koksch, Z. Angrew. Math. Mech. Vol. 67(1987) , p.649.

Google Scholar

[2] D. M. Li, X .Q. Wu, J. Lu, Chaos Solition. Fract. Vol. 1156(2007) , p.121.

Google Scholar

[3] Y. Zheng, X. D. Zhang, Phys. B. Vol. 19(2010) , p.010505.

Google Scholar

[4] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. Vol. 64(1990) , p.821.

Google Scholar

[5] J.Q. Lu, J.D. Cao, Chaos. Vol. 15(2005) , p.043901.

Google Scholar

[6] S. Taherion, Y. C. Lai, Int. J. Bifur. Chaos. Vol. 10(2000) , p.2587.

Google Scholar

[7] Z. Jia, Syst. Eng. Electr. 19(2008) , p.779.

Google Scholar

[8] J.H. Park,. Chaos, Soliton. Frac. Vol. 26 (2005), p.959.

Google Scholar

[9] T. Yang, L. O. Chua, Int. J. Bifurc. Chaos. Vol. 26(1996) , p.2653.

Google Scholar

[10] L. Q. Min, X. D. Zhang, G. R. Chen, Int. J Bifurc. chaos, Vol. 15(2005), p.119.

Google Scholar