Primary Frequency Control Strategy of DFIG Based on Hopfield Neural Network

Article Preview

Abstract:

This paper presents a new method to enhance the participation of doubly fed induction generators (DFIG) effectively in system frequency regulation. A new associated control based on Hopfield neural network (HNN) is proposed to control the rotor kinetic energy and the primary reserve power of DFIG simultaneously. The proposed approach takes advantage of the learning ability of neural network to form an adaptable Hopfield neural network controller (HNNC). And the feasibility of all those control strategies is analyzed in a Two-area four-generator system based on PSCAD/EMTDC. Simulation results indicate that the proposed strategy can greatly improve system frequency stability compared with classical strategies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

738-749

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Varkani, H. Monsef and H. R. Baghaee, Strategy for Participation of Wind Power in Power Market Considering the Uncertainty in Production, International review of electrical engineering-IREE, vol. 4, n. 5, Sep-Oct 2009, pp.1005-1014.

Google Scholar

[2] P. Kundur, Power System Stability and Control (New York: McGraw-Hill, 1994).

Google Scholar

[3] R. Pena, J. C. Clare and G. M. Asher, Doubly fed induction generator using back-to-back PWM converters and its applications to variable-speed wind-energy generation, IEE Proceedings: Electric Power Application, vol. 143, n. 3, May 1996, pp.231-241.

DOI: 10.1049/ip-epa:19960288

Google Scholar

[4] M. Akbari and S. M. Madani, Improving Contribution of DFIG-Based Wind Farms in Short-Term Frequency Regulation of Power Systems, International review of electrical engineering-IREE, vol. 5, n. 4, Jul-Aug 2010, pp.1670-1677.

DOI: 10.1109/iraniancee.2010.5506955

Google Scholar

[5] H. Brahmi and R. Dhifaoui, The Unified Power Flow Controller: a Possible Solution to Support Wind Energy Penetration in the Power System, International review of electrical engineering-IREE, vol. 3, n. 6, Nov-Dec 2010, pp.1015-1023.

Google Scholar

[6] J. Morren, S. W. H. Haan, W. L. Kling, et al, Wind turbines emulating inertia and supporting primary frequency control, IEEE Transaction on Power Systems, vol. 21 n. 1, Feb. 2006, pp.433-434.

DOI: 10.1109/tpwrs.2005.861956

Google Scholar

[7] Jun Cao, Hongfu Wang and Jiaju Qiu, Frequency control strategy of variable-speed constant-frequency doubly-fed induction generator wind turbines, Automation of Electric Power Systems, vol. 33 no.13, 2009, pp.78-82.

DOI: 10.1109/3ca.2010.5533875

Google Scholar

[8] P. K. Keung, P. Li, H. Banakar, et al, Kinetic Energy of Wind Turbine Generators for System Frequency Support, IEEE Transaction on Power Systems, vol. 24, n. 1, Feb 2009, pp.279-287.

DOI: 10.1109/tpwrs.2008.2004827

Google Scholar

[9] J. M. Mauricio, A. Marano, E. A. Gomez, et al, Frequency regulation contribution through variable-speed wind energy conversion systems, IEEE Transaction on Power Systems, vol. 24, n. 1, Feb 2009, pp.173-180.

DOI: 10.1109/tpwrs.2008.2009398

Google Scholar

[10] L. Holdsworth, J. B. Ekanayake, and N. Jenkins, Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines, Wind Energy, vol. 7, n. 1, Jan-Feb 2004, pp.21-35.

DOI: 10.1002/we.105

Google Scholar

[11] A. J. L. Rodriguez, S. Arnalte, and J. C. Burgos, Automatic generation control of a wind farm with variable speed wind turbines, IEEE Transaction on Energy Conversion, vol. 17, n. 2, Jun 2002, pp.279-284.

DOI: 10.1109/tec.2002.1009481

Google Scholar

[12] J. Conroy and R. Watson, Frequency response capability of full converter wind turbine generators in comparison to conventional generation, IEEE Transaction on Power Systems, vol. 23, n. 2, May 2008, pp.649-656.

DOI: 10.1109/tpwrs.2008.920197

Google Scholar

[13] L. Ren, C. Chien, C. M. Hung, et al, Dynamic Reserve Allocation for System Contingency by DFIG Wind Farms, IEEE Transaction on Power Systems, vol. 23, n. 2, May 2008, pp.729-736.

DOI: 10.1109/tpwrs.2008.920071

Google Scholar

[14] N. R. Ullah, T. Thiringer and D. Karlsson, Temporary Primary Frequency Control Support by Variable Speed Wind Turbines -Potential and Applications, IEEE Transaction on Power Systems, vol. 23, n. 2, May 2008, pp.601-612.

DOI: 10.1109/tpwrs.2008.920076

Google Scholar

[15] R.G. Almeida and L.J.A. Pecas, Participation of Doubly Fed Induction Wind Generators in System Frequency Regulation, IEEE Transaction on Power Systems, vol. 22, n. 3, Aug 2007, pp.944-950.

DOI: 10.1109/tpwrs.2007.901096

Google Scholar

[16] P. Bousseau, R. Belhomme, E. Monnot, et al, Contribution of wind farms to ancillary services. Proc. CIGRE 2006 Plenary Session, Paris, France, Sep 2006.

Google Scholar

[17] A. Yazdani and R. Iravani, A neutral-point clamped converter system for direct-drive variable-speed wind power unit, IEEE Transaction on Energy Conversion, vol. 21, n. 2, Jun 2006, pp.596-607.

DOI: 10.1109/tec.2005.860392

Google Scholar

[18] R. G. Almeida, E. D. Castronuovo and L. J. A. Pecas, Optimum Generation Control in Wind Parks When Carrying Out System Operator Requests, IEEE Transaction on Power Systems, vol. 21, n. 2, May 2006, pp.718-725.

DOI: 10.1109/tpwrs.2005.861996

Google Scholar

[19] M. E. Mokadem, V. Courtecuisse, C. Saudemont, et al, Fuzzy Logic Supervisor-Based Primary Frequency Control Experiments of a Variable-Speed Wind Generator, IEEE Transaction on Power Systems, vol. 24, n. 1, Feb 2009, pp.407-417.

DOI: 10.1109/tpwrs.2008.2007005

Google Scholar

[20] L. N. Xu, Neural network control; Electronics Industry Publishing House: Beijing, China, 2009.

Google Scholar

[21] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA. 1982, 79, 2554–2558.

DOI: 10.1073/pnas.79.8.2554

Google Scholar

[22] J. E. Steck and S. N. Balakrishnan, Use of Hopfield Neural Networks in Optimal Guidance, IEEE Transactions on Aerospace and Electronic Systems, vol. 30, n. 1, Jan 1994, pp.887-293.

DOI: 10.1109/7.250431

Google Scholar

[23] J. K. Liu, MATLAB simulation of advanced PID control (Beijing: Publishing House of Electronics Industry, 2003).

Google Scholar

[24] M. Karam and M. S. Fadali, System identification using a Fourier-Hopfield neural network, Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, vol. 30, n. 1, 2001, pp.641-644.

DOI: 10.1109/mwscas.2001.986271

Google Scholar

[25] C. Q. Zhang and M. S. Fadali, Nonlinear system identification using a Gabor/Hopfield network, IEEE Transactions on Systems, vol. 26, n. 1, Feb 1996, pp.124-134.

DOI: 10.1109/3477.484444

Google Scholar