[1]
.J. Astill, C. J. Nosseir and M. Shinozuka. Impact loading on structures with random properties.J. Struct. Mech., 1(1972) 63-67.
Google Scholar
[2]
.F. Yamazaki , M. Shinozuka and G. Dasgupta. Neumann expansion for stochastic finite element analysis. J. Engng. Mech. ASCE. 114 (1988): 1335-1354.
DOI: 10.1061/(asce)0733-9399(1988)114:8(1335)
Google Scholar
[3]
.M. Papadrakakis and V. Papadopoulos. Robust and efficient methods for stochastic finite element analysis using Monte Carlo Simulation. Comput. Methods Appl. Mech. Engrg. 134(1996)325 -340.
DOI: 10.1016/0045-7825(95)00978-7
Google Scholar
[4]
.G. B. Baecher and T. S. Ingra. Stochastic FEM in settlement predictions. J. Geotech. Engrg. Div. 107 (1981)449-463.
DOI: 10.1061/ajgeb6.0001119
Google Scholar
[5]
.X.Q. Peng, Liu Geng, Wu Liyan G.R. Liu and K.Y. Lam. A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending. Computational Mechanics 21(1998) 253-261.
DOI: 10.1007/s004660050300
Google Scholar
[6]
.K. Handa and K. Andersson. Application of finite element methods in the statistical analysis of structures. Proc. 3rd Int. Conf. Struct. Safety and Reliability, Trondheim, Norway (1981)409 -417.
Google Scholar
[7]
.T. Hisada and S. Nakagiri. Role of the stochastic finite elenent method in structural safety and reliability. Proc. 4th Int. Conf. Struct. Safety and Reliability , Kobe, Japan(1985)385-394.
Google Scholar
[8]
.S. Mahadevan and S. Mehta. Dynamic reliability of large frames. Computers & Structures 47 (1993)57-67.
DOI: 10.1016/0045-7949(93)90278-l
Google Scholar
[9]
. Qi Lin Zhang and U. Peil. Random finite element analysis for stochastical responses of structures. Computers & structures 62 (1997)611-616.
DOI: 10.1016/s0045-7949(96)00246-5
Google Scholar
[10]
.W. K. Liu, T. Belytschko and A. Mani. Probabilistic finite elements for nonlinear structural dynamics. Comput. Methods Appl. Mech. Engrg. 57(1986)61-81.
DOI: 10.1016/0045-7825(86)90136-2
Google Scholar
[11]
.S. Chakraborty and S.S. Dey. A stochastic finite element dynamic analysis of structures with uncertain parameters. Int. J. Mech. Sci. 40 (1998)1071-1087.
DOI: 10.1016/s0020-7403(98)00006-x
Google Scholar
[12]
. Zhao Lei and Chen Qiu. A dynamic stochastic finite element method based on dynamic constraint mode. Comput. Methods Appl. Mech. Engrg. 161(1998)245-255.
DOI: 10.1016/s0045-7825(98)00394-6
Google Scholar
[13]
. Zhao Lei and Chen Qiu. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation. Computer & structures. 77 (2000)651-657.
DOI: 10.1016/s0045-7949(00)00019-5
Google Scholar
[14]
. Zhao Lei and Chen Qiu. A Stochastic variational formulation for nonlinear dynamic analysis of structure. Comput. Methods Appl. Mech. Engrg. 190(2000) 597- 608.
DOI: 10.1016/s0045-7825(99)00431-4
Google Scholar
[15]
.A.G., Erdman and G.N., Sandor. A general method for kineto-elastodynamic analysis and synthesis of mechanisms. ASME, Journal of Engineering for Industry 94(1972) 1193-1205.
DOI: 10.1115/1.3428336
Google Scholar
[16]
.R.C. Winfrey. Elastic link mechanism dynamics. ASME, Journal of Engineering for Industry 93(1971)268-272.
DOI: 10.1115/1.3427885
Google Scholar
[17]
.D.A., Turcic and A. Midha. Generalized equations of Motion for the dynamic analysis of elastic mechanism system. ASME Journal of Dynamic Systems, Measurement , and , Control 106(1984)243-248.
DOI: 10.1115/1.3140680
Google Scholar