Performance of CO2 Adsorption with MEA-AN Modified Solid Adsorbent

Article Preview

Abstract:

CO2 solid adsorbent was prepared through impregnating acrylonitrile (AN) modified monoethanolamine (MEA) into structurally disordered mesoporous silica (M) pore channel. Its structure was characterized by X-ray diffraction characterization (XRD), N2 adsorption-desorption tests (BET), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The capacity of CO2 adsorption and desorption were measured and evaluated by comparison with MEA-impregnated material. The results showed that the capacity of M-MN-50 reached up to 125.8 mg·g-1 and could desorb completely at the temperature of 40 °C by vacuum with 2.6 KPa. The hybrid material exhibited satisfactory performance during 10 turnovers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Choi, J. H. Drese, C. W. Jones: ChemSusChem, Vol. 2 (2009), p.796.

Google Scholar

[2] B. R. Strazisar, R. R. Anderson, C. M. White: Energy Fuels, Vol. 17 (2003), p.1034.

Google Scholar

[3] B. Zhang, Y. Duan, K. Johnson: J. Chem. Phys. Vol. 136 (2012), p.064516.

Google Scholar

[4] M. Sevilla, A. B. Fuertes: J. Colloid Interface Sci. Vol. 366 (2012), p.147.

Google Scholar

[5] P. Sharma, J. K. Seong, Y. H. Jung, S. H. Choi, S. D. Park, Y. II, Yoon, II, H. Baek: Powder Technol. Vol. 219 (2012), p.86.

Google Scholar

[6] S. Builes, L. F. Vega: J. Phys. Chem. C, Vol. 116 (2012), p.3017.

Google Scholar

[7] M. Bhagiyalakshmi, P. Hemalatha, M. Ganesh, M. M. Peng, H. T. Jang: J. Ind. Eng. Chem. Vol. 17 (2011), p.628.

Google Scholar

[8] C. Knöfel, J. Descarpentries, A. Benzaouia, V. Zeleňák, S. Mornet, P. L. Llewellyn, V. Hornebecq: Microporous Mesoporous Mater. Vol. 99 (2007), p.79.

DOI: 10.1016/j.micromeso.2006.09.018

Google Scholar

[9] J. L. Li, B. H. Chen: Sep. Purif. Technol. Vol. 41 (2005), p.109.

Google Scholar

[10] G. S. Goff, G. T. Rochelle: Ind. Eng. Che. Res. Vol. 43 (2004), p.6400.

Google Scholar

[11] T. Filburn, J. J. Helble, R. A. Weiss: Ind. Eng. Che. Res. Vol. 44 (2005), p.1542.

Google Scholar

[12] X. Y. Zhang, X. X. Zheng, S. S. Zhang, B. Zhao, W. Wu: Ind. Eng. Che. Res. Vol. 51 (2012), p.15163.

Google Scholar

[13] A. Heydari-Gorji, Y. Belmabkhout, A. Sayari: Langmuir, Vol. 27 (2011), p.12411.

Google Scholar

[14] M. Bhagiyalakshmi, R. Anuradha, S. D. Park, H. T. Jang: Microporous Mesoporous Mater. Vol. 131 (2010), p.265.

Google Scholar

[15] P. Sharma, I. H. Baek, Y. W. Park, S. C. Nam, J. H. Park, S. D. Park, S. Park: Korean J. Chem. Eng. Vol. 29 (2012), p.249.

Google Scholar

[16] C. Chen, K. S. You, J. W. Ahn, W. S. Ahn: Korean J. Chem. Eng. Vol. 27 (2010), p.1010.

Google Scholar

[17] P. T. Tanev, T. J. Pinnavaia: Chem. Mater. Vol. 8 (1996), p. (2068).

Google Scholar

[18] X. Yan, L. Zhang, Y. Zhang, G. Yang, Z. Yan: Ind. Eng. Che. Res. Vol. 50 (2011), p.3220.

Google Scholar

[19] X. Wang, V. Schwartz, J. C. Clark, X. Ma, S. H. Overbury, X. Xu, C. Song: J. Phys. Chem. C, Vol. 113 (2009), p.7260.

Google Scholar