Chaos Identification and Suppression in an Indirect Field-Oriented Control of Induction Motor Drive Based on 0-1 Method

Article Preview

Abstract:

A period-doubling bifurcation may occur when the estimation error of the rotor time constant exists in an indirect field-oriented control (IFOC) of induction motor drives. Then chaos oscillations appear under some parameter values which are usually tested by the Largest Lyapunov exponents. In this paper, we apply the modified 0-1 method to detect chaos phenomenon instead, and design a controller to suppress chaos in the IFOC system. Simulation results indicate that the proper parameter region of the controller can be obtained with this method, and with the adaptive controller the system can quit from the chaotic state into the stable state effectively and robustly. The 0-1 method identifies chaotic behaviors directly through the time series without constructing phase space. Therefore, the proposed method is not affected by the complexity of the system and is not sensitive to noises.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-198

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Zhang, Y. M. Lu, Z. Y. Mao, Bifurcations and chaos in indirect field-oriented control of induction motors, J. Contr. Theory Appl. 2 (2004) 353-357.

DOI: 10.1007/s11768-004-0039-1

Google Scholar

[2] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov Exponents from a Time Series, Physica D. 16 (1985) 285-317.

DOI: 10.1016/0167-2789(85)90011-9

Google Scholar

[3] F. Takens, Determining strange attractors in turbulence, Lecture notes in Mathematics, 898 (1981) 366-381.

DOI: 10.1007/bfb0091924

Google Scholar

[4] M. T. Rosenstein, J. J. Collins, C. J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65 (1993) 117-134.

DOI: 10.1016/0167-2789(93)90009-p

Google Scholar

[5] G. Gottwald, I. Melbourne, A new test for chaos in deterministic systems, Proc. Roy. Soc. London A , 460 (2004) 603-611.

DOI: 10.1098/rspa.2003.1183

Google Scholar

[6] G. A. Gottwald, I. Melbourne, On the Implementation of the 0–1 Test for Chaos, SIAM J. Appl. Dyn. Syst. 8 (2009) 129–145.

DOI: 10.1137/080718851

Google Scholar

[7] F. Gordillo, F. Salas, R. Ortega, J. Aracil, Hopf bifurcation in indirect field-oriented control of induction motors, Automatica, 38 (2002) 829-935.

DOI: 10.1016/s0005-1098(01)00274-6

Google Scholar

[8] A. S. Bazanella, R. Reginatto, Robust tuning of the speed loop in indirect field oriented control of induction motors. Automatica, 37 (2001) 1811-1818.

DOI: 10.1016/s0005-1098(01)00128-5

Google Scholar

[9] Information on http: /www. mathworks. cn/matlabcentral/fileexchange/25050-0-1-test-for-chaos.

Google Scholar

[10] D. Q. Wei, B. Zhang, D. Y. Qiu, X. S. Luo, Adaptive controlling chaos in permanent magnet synchronous motor based on the LaSalle theory, Acta Phys. Sin. 58 (2009) 6026-6029.

Google Scholar

[11] C. L. Li, S. M. Yu, Adaptive chaotic control of permanent magnet synchronous motor, Acta Phys. Sin. 60 (2011) 120505.

DOI: 10.7498/aps.60.120505

Google Scholar