[1]
Tyfour WR, Beynon JH, Kapoor A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact[J]. Wear 1996, 197: 255~65.
DOI: 10.1016/0043-1648(96)06978-5
Google Scholar
[2]
J.W. Ringsberg, M. Loo-Morrey, B.L. Josefson. Prediction of fatigue crack initiation for rolling contact fatigue[J]. InternationalJournal of Fatigue, 2000, 22: 205~215.
DOI: 10.1016/s0142-1123(99)00125-5
Google Scholar
[3]
Liu Jiangfeng, Wei Qingchao. High railway fatigue life prediction of the rail[J]. Journal of Railway Engineering Society, 2000, 6: 66.
Google Scholar
[4]
Wang Jiangxi, XuYude, LianSongliang. Simulation of Predicting RCF Crack Initiation Life of Rails under Random Wheel rail Forces[J]. Journal of Railway Engineering Society 2010, 32(3).
Google Scholar
[5]
Jin Xuesong, Zhang Jiye, Wen Zefeng et al. Overview of Phenomena of Rolling Contact Fatigue of Wheel/Rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250~257.
Google Scholar
[6]
ElennaKabo, Anders Ekberg. Material Defects In Rolling Contact Fatigue of Railway Wheels-The Influence of Defect Size[J]. Science Direct, 2005: 1194~1200.
DOI: 10.1016/j.wear.2004.03.070
Google Scholar
[7]
Elena Kabo. Material Defects In Rolling Contact Fatigue of Railway Wheels- The Influence of Overloads and Defect Clusters[J]. Journal of Mechanical Strength, 2002, 24: 887~894.
DOI: 10.1016/s0142-1123(01)00193-1
Google Scholar
[8]
Jiang Y, Sehitoglu H. Rolling contact stress analysis with the application of a new plasticity model[J]. Wear, 1996, 191: 35~44.
DOI: 10.1016/0043-1648(95)06663-2
Google Scholar
[9]
Jiang Y, Sehitoglu H. Modeling of cyclic ratchetting plasticity, part I: development of constitutive relations[J]. Trans ASME, J ApplMech, 1996, 63: 720~5.
DOI: 10.1115/1.2823355
Google Scholar
[10]
Jiang Y, Sehitoglu H. Modeling of cyclic ratchetting plasticity, part II: comparison of model simulations with experiments[J]. Trans ASME, J ApplMech, 1996, 63: 726~33.
DOI: 10.1115/1.2823356
Google Scholar
[11]
Jiang Y. A fatigue criterion for general multiaxialloading[J]. Fat FractEngng Mater Struct, 2000, 23: 19~32.
Google Scholar
[12]
CarterFW. On the action of a Loeomotive driving wheel[J]. Proeeedings of the Royal Soeiety of London, 1926, 112: 151~157.
Google Scholar
[13]
Hertz, H. Uber die Beruhrung fester elastieherKurper[J]. Journal fur reine and angewandte Mathematik, 1882, 92: 156~173.
DOI: 10.1515/9783112342404-004
Google Scholar
[14]
K. L. Johnson. Contact Mechanics[M]. Cambridge: Cambridge University Press, (1985).
Google Scholar
[15]
Bower AF. Some AsPect of Plastic flow, Residual Stress and Fatigue due to Rolling and Sliding Coniact[D]. Emmanuel College, DePartment of Engineering University of Cambridge, (1987).
Google Scholar
[16]
Bower AF. Cyelie Hardening ProPerties of Hard Drawn CoPPer and Rail Stress[J]. J. Meeh. Phys. Solids, 1989, 37: 455~481.
Google Scholar
[17]
G. Glinka, G. Shen and A. Plumtree (1995) A multi-axial fatigue strain energy density parameter related to the critical fracture plane[J]. Fatigue Fract. Engng Mater. Struct, 18, 37~46.
DOI: 10.1111/j.1460-2695.1995.tb00140.x
Google Scholar
[18]
G. Glinka, G. Wang and A. Plumtree (1995) Mean stress effects in multi-axial fatigue[J]. Fatigue Fract. Engng Mater. Struct, 18, 755~764.
DOI: 10.1016/0142-1123(96)82754-x
Google Scholar
[19]
Jin Xuesong, Liu Qiyue. Tribology of Wheel and Rail[M]. Bei Jing: China Railway Publishing House, 2004, 3: 62~63.
Google Scholar
[20]
ZhuangLijian. Rolling Contact Fatigue Life Predictions of 1070 Steel[D]. Zhe Jiang: Zhe Jiang University of Technology, (2007).
Google Scholar