Topology Optimization of Viscoelastic Materials Distribution of Damped Sandwich Plate Composite

Article Preview

Abstract:

Optimum distribution of viscoelastic materials of damped sandwich plate composite for suppressing plate vibration is investigated. A solid isotropic material with penalization model is described based on the proposed interface finite element of viscoelastic layer. The objective function is chosen as maximization of the modal loss factor. Numerical results show that the optimum distributions of viscoelastic materials are mainly at the place where large shear displacements would be happened.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1182-1186

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Lall, B. C. Nakra and N. T. Asnani, Optimum design of viscoelastically damped sandwich panels. Engineering Optimization, 6 (1983), pp.197-205.

DOI: 10.1080/03052158308902470

Google Scholar

[2] J. L. Marcelin, Ph. Trompette and A. Smati, Optimal constrained layer damping with partial coverage. Finite Elements Anal. Des., 12 (1992), pp.273-280.

DOI: 10.1016/0168-874x(92)90037-d

Google Scholar

[3] H. Zheng, C. Cai, and X. M. Tan, Optimization of partial constrained layer damping treatment for vibration energy minimization of vibrating beams. Computers and Structures, 82 (2004), pp.2493-2507.

DOI: 10.1016/j.compstruc.2004.07.002

Google Scholar

[4] H. Zheng, C. Cai, G. S. H. Pau and G. R. Liu, Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. Journal of Sound and Vibration, 279 (2005), pp.739-756.

DOI: 10.1016/j.jsv.2003.11.020

Google Scholar

[5] M. Alvelid, Optimal position and shape of applied damping material. Journal of Sound and Vibration, 310 (2008), pp.739-756.

DOI: 10.1016/j.jsv.2007.08.024

Google Scholar

[6] M. P. Bendsøe and N. Kikuchi , Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71 (1988), p.197–224.

DOI: 10.1016/0045-7825(88)90086-2

Google Scholar

[7] G. I. N. Rozvany, A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37 (2009), p.217–237.

DOI: 10.1007/s00158-007-0217-0

Google Scholar

[8] Y. M. Yi, S. H. Park and S. K. Youn, Design of microstructures of viscoelastic composites for optimal characteristics. International Journal of Solids and Structures, 37 (2000), pp.4791-4810.

DOI: 10.1016/s0020-7683(99)00181-x

Google Scholar

[9] A. Lumsdaine, Topology optimization of constrained damping layers treatments Proc. ASME Int. Mechanical Engineering Congr. and Exposition (2002) IMECE2002-39021, pp.149-156.

Google Scholar

[10] M. P. Bendsøe and O. Sigmund, Material interpolations in topology optimization. Archive of Applied Mechanics, 69 (1999), pp.635-654.

DOI: 10.1007/s004190050248

Google Scholar

[11] K. Svanberg, The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24 (1987), pp.359-373.

DOI: 10.1002/nme.1620240207

Google Scholar

[12] C. D. Johnson and D. Kienholz, Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20 (1981), pp.1284-1290.

DOI: 10.2514/3.51190

Google Scholar