[1]
A. K. Lall, B. C. Nakra and N. T. Asnani, Optimum design of viscoelastically damped sandwich panels. Engineering Optimization, 6 (1983), pp.197-205.
DOI: 10.1080/03052158308902470
Google Scholar
[2]
J. L. Marcelin, Ph. Trompette and A. Smati, Optimal constrained layer damping with partial coverage. Finite Elements Anal. Des., 12 (1992), pp.273-280.
DOI: 10.1016/0168-874x(92)90037-d
Google Scholar
[3]
H. Zheng, C. Cai, and X. M. Tan, Optimization of partial constrained layer damping treatment for vibration energy minimization of vibrating beams. Computers and Structures, 82 (2004), pp.2493-2507.
DOI: 10.1016/j.compstruc.2004.07.002
Google Scholar
[4]
H. Zheng, C. Cai, G. S. H. Pau and G. R. Liu, Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. Journal of Sound and Vibration, 279 (2005), pp.739-756.
DOI: 10.1016/j.jsv.2003.11.020
Google Scholar
[5]
M. Alvelid, Optimal position and shape of applied damping material. Journal of Sound and Vibration, 310 (2008), pp.739-756.
DOI: 10.1016/j.jsv.2007.08.024
Google Scholar
[6]
M. P. Bendsøe and N. Kikuchi , Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71 (1988), p.197–224.
DOI: 10.1016/0045-7825(88)90086-2
Google Scholar
[7]
G. I. N. Rozvany, A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37 (2009), p.217–237.
DOI: 10.1007/s00158-007-0217-0
Google Scholar
[8]
Y. M. Yi, S. H. Park and S. K. Youn, Design of microstructures of viscoelastic composites for optimal characteristics. International Journal of Solids and Structures, 37 (2000), pp.4791-4810.
DOI: 10.1016/s0020-7683(99)00181-x
Google Scholar
[9]
A. Lumsdaine, Topology optimization of constrained damping layers treatments Proc. ASME Int. Mechanical Engineering Congr. and Exposition (2002) IMECE2002-39021, pp.149-156.
Google Scholar
[10]
M. P. Bendsøe and O. Sigmund, Material interpolations in topology optimization. Archive of Applied Mechanics, 69 (1999), pp.635-654.
DOI: 10.1007/s004190050248
Google Scholar
[11]
K. Svanberg, The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24 (1987), pp.359-373.
DOI: 10.1002/nme.1620240207
Google Scholar
[12]
C. D. Johnson and D. Kienholz, Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20 (1981), pp.1284-1290.
DOI: 10.2514/3.51190
Google Scholar