[1]
Carlson N A. Federated square root filter for decentralized parallel processors. Aerospace and Electronic Systems, IEEE Transactions on, 1990, 26(3): 517-525.
DOI: 10.1109/7.106130
Google Scholar
[2]
Caron F, Davy M, Duflos E, et al. Particle filtering for multisensor data fusion with switching observation models: Application to land vehicle positioning. Signal Processing, IEEE Transactions on, 2007, 55(6): 2703-2719.
DOI: 10.1109/tsp.2007.893914
Google Scholar
[3]
Yee D, Reilly J P, Kirubarajan T, et al. Approximate conditional mean particle filtering for linear/nonlinear dynamic state space models. Signal Processing, IEEE Transactions on, 2008, 56(12): 5790-5803.
DOI: 10.1109/tsp.2008.929660
Google Scholar
[4]
Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and computing, 2000, 10(3): 197-208.
DOI: 10.1023/a:1008935410038
Google Scholar
[5]
Wang Q, Jiang W, Yang C, et al. A novel particle filter for tracking fast target. Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on. IEEE, 2010: 288-293.
DOI: 10.1109/iwaci.2010.5585219
Google Scholar
[6]
Ilyas M, Lee J G, Park C G. Federated hybrid Extended Kalman Filter design for multiple satellites formation flying in LEO. SICE Annual Conference, 2008. IEEE, 2008: 2595-2600.
DOI: 10.1109/sice.2008.4655104
Google Scholar
[7]
Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422.
DOI: 10.1109/jproc.2003.823141
Google Scholar
[8]
Guo W, Han C, Lei M. Improved unscented particle filter for nonlinear bayesian estimation. Information Fusion, 2007 10th International Conference on. IEEE, 2007: 1-6.
DOI: 10.1109/icif.2007.4407986
Google Scholar
[9]
Lin M, Sheng L. Multi-sensor information fusion extended Kalman particle filter. Advanced Computer Control (ICACC), 2010 2nd International Conference on. IEEE, 2010, 4: 417-419.
DOI: 10.1109/icacc.2010.5487223
Google Scholar