[1]
Ouyang Guangzhong. The Four-color Problem[M]. People Education Press. (1981).
Google Scholar
[2]
K. May. The Origin of the Four- Color Conjecture[J]. Isis. 1965, 56, pp.346-348.
DOI: 10.1086/350003
Google Scholar
[3]
Kempe A B. On the geographical problem of the four colors[J]. Amer J Math, 1879(2): 193-200.
Google Scholar
[4]
A. Cayley. On the Colouring of Maps[J] . Proceedings of the Royal Geographical Society ( New Series) . 1879( 1) : 259- 261.
Google Scholar
[5]
Appel K I, HakenW. Every planar map is four colourable [J ]. Bull. Am. M ath. Soc. 1976, 82: 711-712.
Google Scholar
[6]
N. Robertson, D. Sanders, P. Seymour, R. Thomas. The Four- Color Theorem[J]. Journal of Combinatorial Theory (Ser. B) . 1997, 70: 2- 44.
Google Scholar
[7]
G. Gonthier. Formal Proof: The Four- Color Theorem[J]. Notices of the AMS. 2008, 55( 11) : 1382- 1393.
Google Scholar
[8]
T. Pavlidis. Algorithms for graphics and image processing[J]. Rockville, Computer Science, (1982).
Google Scholar
[9]
Ma Xiaohu, Pan Zhigeng. Triangulation of simple polygon based on determination of convex concave vertices[J]. Journal of Computer-Aided Design & Computer Graphics, 1999, 11(1): 1-3.
Google Scholar
[10]
Liu Qiang, Li Deren. A Recursive Algorithm for Triangulation of Arbitrary Polygons Based on BSP Tree[J]. Journal of Wuhan University (Information Science Edition), 2002, 27(5): 528-532.
Google Scholar
[11]
Zhang Yuping, Jaing Shouwei. Efficient Approach of Convex Hull Triangulation Based on Monotonic Chain[J]. Journal of Nanjing University of Science and Technology, 2004, 28(6): 590-594.
Google Scholar
[12]
Xue Geng, Fan Xiumei, Liao Lejian. The Application of Map-coloring Technology to Backbone Routing System[C]. Proceedings of the 2009 International Symposium on Computer Network and Multimedia Technology. CNMT 2009, pp.1136-9, (2009).
DOI: 10.1109/cnmt.2009.5374615
Google Scholar