[1]
C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, (1992).
Google Scholar
[2]
X. DAI, Y. DIAO, Q. DU, Frame wavelet sets in, Proceedings of the American Mathematical Society, 2001 129(7): 2045-(2055).
Google Scholar
[3]
X. Dai, Y. Diao, Q. Gu, D. Han. Frame wavelet sets in [J]. Journal of Computational and Mathematics, 155(2003): 69-82.
DOI: 10.1016/s0377-0427(02)00892-0
Google Scholar
[4]
Dai X, Larson D, Spleegle D. Wavelet sets in [J]. J. Fourier Anal Appl. 1997, 3(4): 451-456.
Google Scholar
[5]
Zhanwei Liu, Guoen Hu, Guoen Hu, Guochang Wu. Frame scaling function sets and frame wavelet sets in [J]. Chaos, Solitions and Fractals, 40(2009): 2483-2490.
DOI: 10.1016/j.chaos.2007.10.042
Google Scholar
[6]
Zhuihua Zhang*, Naoki Saito, Ring-like structures of frequency domain of wavelet, Appl. Comput. harmon. Anal. 29(2010 )18-29.
Google Scholar
[7]
Zhang ZS. Supports of Fourier transform of scaling functions. Appl Comput Harmon Anal 2007, 22(2): 141-156.
Google Scholar
[8]
Dai X, Larson D, Speegle D. Wavelet sets in . J Fourier Anal Appl. 1997; 3(4): 451-456.
Google Scholar
[9]
X. Dai, S. Lu, Wavelets in subspaces, Mich .J. Math. 43(1996) 81-89.
Google Scholar
[10]
Speegle D. The s-elementary wavelet sets in are pash-connected. Proc Am Math Soc. 1999; 127(1); 223-233.
Google Scholar
[11]
El Naschie MS. Hilbert Frock and Cantorian spaces in the quantum two-slit experiment. Chao, Solition & Fractals. 2006; 27(1): 39-42.
DOI: 10.1016/j.chaos.2005.04.094
Google Scholar
[12]
El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle ghysics. Chao, Solition & Fractals. 2004; 19(1): 209-236.
DOI: 10.1016/s0960-0779(03)00278-9
Google Scholar
[13]
El Naschie MS. A guide to machematics of E-infinity Cantorian spacetime theory. Chao, Solition & Fractals. 2005; 25(5): 955-964.
DOI: 10.1016/j.chaos.2004.12.033
Google Scholar