The Existences of Frame Wavelet Set

Article Preview

Abstract:

In this paper, Let be a real expansive matrix, it mainly discusses the existences of frame wavelet set, we discuss the characterization of frame wavelet sets in, and several examples are presented, in order to deepen the understanding of frame wavelet set, which gives the two related theorems; we try to use an equivalent condition to describe frame scale sets, and give an equivalent description about a normalized frame scale set.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2841-2845

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, (1992).

Google Scholar

[2] X. DAI, Y. DIAO, Q. DU, Frame wavelet sets in, Proceedings of the American Mathematical Society, 2001 129(7): 2045-(2055).

Google Scholar

[3] X. Dai, Y. Diao, Q. Gu, D. Han. Frame wavelet sets in [J]. Journal of Computational and Mathematics, 155(2003): 69-82.

DOI: 10.1016/s0377-0427(02)00892-0

Google Scholar

[4] Dai X, Larson D, Spleegle D. Wavelet sets in [J]. J. Fourier Anal Appl. 1997, 3(4): 451-456.

Google Scholar

[5] Zhanwei Liu, Guoen Hu, Guoen Hu, Guochang Wu. Frame scaling function sets and frame wavelet sets in [J]. Chaos, Solitions and Fractals, 40(2009): 2483-2490.

DOI: 10.1016/j.chaos.2007.10.042

Google Scholar

[6] Zhuihua Zhang*, Naoki Saito, Ring-like structures of frequency domain of wavelet, Appl. Comput. harmon. Anal. 29(2010 )18-29.

Google Scholar

[7] Zhang ZS. Supports of Fourier transform of scaling functions. Appl Comput Harmon Anal 2007, 22(2): 141-156.

Google Scholar

[8] Dai X, Larson D, Speegle D. Wavelet sets in . J Fourier Anal Appl. 1997; 3(4): 451-456.

Google Scholar

[9] X. Dai, S. Lu, Wavelets in subspaces, Mich .J. Math. 43(1996) 81-89.

Google Scholar

[10] Speegle D. The s-elementary wavelet sets in are pash-connected. Proc Am Math Soc. 1999; 127(1); 223-233.

Google Scholar

[11] El Naschie MS. Hilbert Frock and Cantorian spaces in the quantum two-slit experiment. Chao, Solition & Fractals. 2006; 27(1): 39-42.

DOI: 10.1016/j.chaos.2005.04.094

Google Scholar

[12] El Naschie MS. A review of E-infinity theory and the mass spectrum of high energy particle ghysics. Chao, Solition & Fractals. 2004; 19(1): 209-236.

DOI: 10.1016/s0960-0779(03)00278-9

Google Scholar

[13] El Naschie MS. A guide to machematics of E-infinity Cantorian spacetime theory. Chao, Solition & Fractals. 2005; 25(5): 955-964.

DOI: 10.1016/j.chaos.2004.12.033

Google Scholar