[1]
Fletcher R. and Reeves C.M. Function Minimization by Conjugate Gradients[J]. Computer Journal, 1964, 7 : 149-154.
Google Scholar
[2]
Sorenson H. W. Comparision of some conjugate direction procedures for function minimization [J]. Journal of the Franklin Institute 1969, 288 : 421-441.
DOI: 10.1016/0016-0032(69)90253-1
Google Scholar
[3]
Liu Y., Storey C. Efficient generalized conjugate gradient algorithms[J]. Journal of optimization theory and applications, 1991, 69: 129-153.
DOI: 10.1007/bf00940464
Google Scholar
[4]
Dai Y. and Yuan Y. Nonlinear Conjugate Gradient Methods [M]. Shanghai: Shanghai Science and Technology Press, (2001).
Google Scholar
[5]
Yuan Y. and Stoer J. A subspace study on conjugate algorithms[J]. ZAMM Z. angew. Math. Meth. 1995, 75(11): 69-77.
DOI: 10.1002/zamm.19950750118
Google Scholar
[6]
Nocedal J. and Wright S. J. Numerical Optimization[M]. Springer Series in Operations Research. New York: Springer-Verlag, (1999).
Google Scholar
[7]
[onn A. R., Gould N. L. M., and Sartenaer A., etal On Interated-Subspace minimization methods for nonlinear optimization[A]. L. Adams and L. Nazareth, Linear and Nonlinear conjugate gradient related methods[C]. AMS-IMS-SIAM. 1996: 50-78.
Google Scholar
[8]
Dennis J. E. and Schnabel R.B. Numerical methods for unconstrained optimization and nonlinear equations[M]. Prentice-Hall Englewood Cliffs, NJ, (1983).
Google Scholar