A Fuzzy Adaptive K-SVD Dictionary Algorithm for Face Recogntion

Article Preview

Abstract:

Sparse representations using overcomplete dictionaries has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. The K-SVD algorithm is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. However, the existing K-SVD algorithm is employed to dwell on the concept of a binary class assignment meaning that the multi-classes samples are assigned to the given classes definitely. The work proposed in this paper provides a novel fuzzy adaptive way to adapting dictionaries in order to achieve the fuzzy sparse signal representations, the update of the dictionary columns is combined with an update of the sparse representations by incorporated a new mechanism of fuzzy set, which is called fuzzy K-SVD. Experimental results conducted on the ORL and Yale face databases demonstrate the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3797-3803

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Mazhar, P.D. Gader, J.N. Wilson, A Matching Pursuit Based Similarity Measure for Fuzzy Clustering and Classification of Signals, In: International Conference on Fuzzy Systems, Hong Kong, (2008).

DOI: 10.1109/fuzzy.2008.4630636

Google Scholar

[2] A.E. Moghadam, S. Shirani, Matching Pursuit-Based Region-of-Interest Image Coding, IEEE Trans. Image Processing 16 (2) (2007) 406–415.

DOI: 10.1109/tip.2006.888333

Google Scholar

[3] Marcellin, M.W., Gormish, M.J., Bilgin, A., Boliek, M.P.: An overview of JPEG-2000, In Proc. Data Compression Conf., 2000, p.523–541.

DOI: 10.1109/dcc.2000.838192

Google Scholar

[4] J.L. Starck, E.J. Candes, D.L. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Processing 11 (2002) 670–684.

DOI: 10.1109/tip.2002.1014998

Google Scholar

[5] M. Elad, J.L. Starck, P. Querre, Simultaneous cartoon and texture image inpainting using morphological component analysis, J. Appl. Comput. Harmon. Anal. 19 (2005) 340–358.

DOI: 10.1016/j.acha.2005.03.005

Google Scholar

[6] K.C. Kwak, , W. Pedrycz, Face recognition using a fuzzy fisherface classifier, Pattern Recognition 38 (10) (2005) 1717–1732.

DOI: 10.1016/j.patcog.2005.01.018

Google Scholar

[7] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Vedag, (2010).

DOI: 10.1007/978-1-4419-7011-4

Google Scholar

[8] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Trans. Signal Processing 54 (11) (2006) 4311–4322.

DOI: 10.1109/tsp.2006.881199

Google Scholar

[9] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Transactions on Systems, Man and Cybernetics, 15 (4) (1985) 580–585.

DOI: 10.1109/tsmc.1985.6313426

Google Scholar

[10] X.N. Song, Y.J. Zheng, X.J. Wu, X.B. Yang, J.Y. Yang, A complete fuzzy discriminant analysis approach for face recognition, J. Applied Soft Computing 10 (2010) 208–214.

DOI: 10.1016/j.asoc.2009.07.002

Google Scholar

[11] M.A. Atencia, G. Joya, F. Sandoval, Parametric identification of robotic systems with stable time-varying Hopfield networks, Neural Computing and Applications 13 (2004) 270–280.

DOI: 10.1007/s00521-004-0421-4

Google Scholar

[12] Z.N. Hu, S.N. Balakrishnan, Parameter estimation in nonlinear systems using Hopfield neural networks, Journal of Aircraft 42(1) (2005) 41–53.

DOI: 10.2514/1.3210

Google Scholar

[13] H. Alonso, T. Mendonça, P. Rocha, Hopfield neural networks for on-line parameter estimation, Neural Networks 22 (2009) 450–462.

DOI: 10.1016/j.neunet.2009.01.015

Google Scholar

[14] ORL database, The ORL face database at the AT&T (Olivetti) research laboratory, http: /www. uk. research. att. com/facedatabase. html.

Google Scholar

[15] H. Yu, J. Yang, A direct LDA algorithm for high-dimensional data—with application to face recognition, Pattern Recognition 34 (10) (2001) 2067–(2070).

DOI: 10.1016/s0031-3203(00)00162-x

Google Scholar

[16] J. Yang, A.F. Frangi, J.Y. Yang, D. Zhang, Z. Jin, KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2) (2005) 230–244.

DOI: 10.1109/tpami.2005.33

Google Scholar

[17] X.X. Zhang, Y.D. Jia, A linear discriminant analysis framework based on random subspace for face recognition, Pattern Recognition 40 (2007) 2585–2591.

DOI: 10.1016/j.patcog.2006.12.002

Google Scholar

[18] J. Ye, R. Janardan, Q. Li, Two-dimensional linear discriminant analysis, In: Proceedings of the advances in neural information processing systems (NIPS), 2005, p.1569–1576.

Google Scholar

[19] X. He, S. Yan, Y. Hu, P. Niyogi, H. Zhang, Face recognition using laplacianfaces, IEEE Transaction on pattern analysis and machine intelligence 27 (2005) 328–40.

DOI: 10.1109/tpami.2005.55

Google Scholar

[20] Q.B. You, N.N. Zheng, S.Y. Du, Y. Wu, Neighborhood Discriminant Projection for Face Recognition, J. Pattern Recognition Letters 28 (2007) 1156–1163.

DOI: 10.1016/j.patrec.2007.01.011

Google Scholar