Chaotic System Parameter Identification Based on Firefly Optimization

Article Preview

Abstract:

Firefly Optimization Algorithm (FA) is a novel heuristic stochastic algorithm based on swarm intelligence, which is inspired by the fireflies biochemical and collective behavior. Due to the increment of attractiveness and the fixed step factor, the optimizing results are easily repeated oscillation on the position of local or global extreme value point, and the optimizing accuracy is reduced. Accordingly, this paper puts forward chaos firefly optimization algorithm (CFA), the improved algorithm can improve the diversity of population and the ergodicity of optimization, increase the ability of getting rid of trapped into local minima point. Chaos firefly optimization algorithm is used for the identification of chaotic system parameter; the results show the high accuracy of the algorithm parameter identification.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3821-3826

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] YANG Xin-she.Nature-inspired metaheuristic algorithms [M].[s. 1. ]: Luniver Press, (2008).

Google Scholar

[2] Ming-Huwi Horng. Vector quantization using the firefly algorithm for image compression[J]. Expert Systems with Applications, 2012, 1078-1091.

DOI: 10.1016/j.eswa.2011.07.108

Google Scholar

[3] A. Chatterjee G.K. Mahanti, and Arindam Chatterjee. Design of a fully digital controlled reconfigurable switched beam concentric ring array antenna using firefly and particle swarm optimization algorithm[J]. Progress In Electromagnetics Research B, 2012, 36: 113-131.

DOI: 10.2528/pierb11083005

Google Scholar

[4] Amir Hossein Gandomi, Xin-She Yang, Amir Hossein Alavi. Mixed variable structural optimization using Firefly Algorithm[J]. Computers and Structures, 2011, 89: 2325-2336.

DOI: 10.1016/j.compstruc.2011.08.002

Google Scholar

[5] Ming-Huwi Horng , Ren-Jean Liou. Multilevel minimum cross entropy threshold selection based on the firefly algorithm[J]. Expert Systems with Applications, 2011, 38: 14805-14811.

DOI: 10.1016/j.eswa.2011.05.069

Google Scholar

[6] Gilang Kusuma Jati and Suyanto. Evolutionary discrete firefly algorithm for travelling salesman problem[M]. ICAIS2011, Lecture Notes in Artificial Intelligence (LNAI 6943), (2011).

DOI: 10.1007/978-3-642-23857-4_38

Google Scholar

[7] Theofanis Apostolopoulos, Aristidis Vlachos. Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem[A]. Hajo Broersma. International Journal of Combinatorics 2011[C]: Article ID 523806.

DOI: 10.1155/2011/523806

Google Scholar

[8] B. Rampriya, K. Mahadevan, S. Kannan. Unit commitment in deregulated power system using Lagrangian firefly algorithm[A]. Proc. of IEEE Int. Conf. on Communication Control and Computing Technologies (ICCCCT), pp.389-393.

DOI: 10.1109/icccct.2010.5670583

Google Scholar

[9] Wang lin, Liu bo. Particle swarm optimization and scheduling algorithm [M] Beijing: tsinghua university press, (2008).

Google Scholar

[10] Ji zhen, Liao huilian, Wu qinghua. Particle swarm optimization (pso) algorithm and application [M]. Beijing: China science press, (2009).

Google Scholar

[11] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, (1963).

Google Scholar

[12] Li lixiang, Pen haipeng, Yang yixian. Based on chaos ant group algorithm Lorenz chaos system parameter estimation [J]. Physics journal, 2007 , 56 : 51-55.

Google Scholar