[1]
Jr. French, R. P. John, A formal theory of social power, Psychological Review, vol. 63, May 1956, pp.181-194, doi: 10. 1037/h0046123.
Google Scholar
[2]
S. Mandra, S. Fortunato, and C. Castellano, Coevolution of Glauber-like Ising dynamics and topology, Physical Review E, vol. 80, November 2009, doi: 10. 1103/PhysRevE. 80. 056105.
DOI: 10.1103/physreve.80.056105
Google Scholar
[3]
R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulations, JASSS, vol. 5, no. 3, (2002).
Google Scholar
[4]
M. Granovetter, Threshold models of collective behavior, Am. J. Sociol., vol. 83, no. 6, May 1978, pp.1420-1443.
Google Scholar
[5]
P. Clifford and A. Sudbury, A model for spatial conflict, Biometrika, vol. 60, iss. 3, 1973, pp.581-588, doi: 10. 1093/biomet/60. 3. 581.
DOI: 10.1093/biomet/60.3.581
Google Scholar
[6]
R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, vol. 3, no. 4, August 1975, pp.643-663.
DOI: 10.1214/aop/1176996306
Google Scholar
[7]
S. Redner, A Guide to First-passage Processes, Cambridge University Press, (2001).
Google Scholar
[8]
R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys., vol. 4, iss. 2, February (1963).
Google Scholar
[9]
S. Galam, Sociophysics: A review of Galam models, Int. J. Mod. Phys. C, vol. 19, iss. 3, March 2008, doi: 10. 1142 /S0129183108012297.
DOI: 10.1142/s0129183108012297
Google Scholar
[10]
K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, Int. J. Mod. Phys. C, vol. 11, iss. 6, September 2000, pp.1157-1165.
DOI: 10.1142/s0129183100000936
Google Scholar
[11]
K. Sznajd-Weron, Dynamical model of Ising spins, Phys. Rev. E, vol. 70, iss. 3, September 2004, doi: 10. 1103/PhysRevE. 70. 037104.
DOI: 10.1103/physreve.70.037104
Google Scholar
[12]
P. Erdös and A. Rényi, On random graphs, Publ. Math. Debrecen, vol. 6, 1959, p.290–297.
Google Scholar
[13]
P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., vol. 5, 1960, p.17~60.
Google Scholar
[14]
J. J. Binney, N. J. Dowrick, A. J. Fisher and M. Newman, The Theory of Critical Phenomena, Oxford University Press, (1992).
Google Scholar