Emergence of Abstaining in Glauber Opinion Dynamics

Article Preview

Abstract:

We study the evolution of Glauber opinion dynamics with abstaining and tunable threshold on random graphs. The phase diagram shows plentiful features in the space of the two parameters of the model, the threshold and the abstaining probability. It is found that the threshold that limits the agents to be stable plays an important role in the emerging of abstaining in a wide spread. And it can be obtained that the observables stay the same in frozen state whatever the initial density of 0 is. We also use the mean field calculations to verify the fact of linearity between the density of 0 and the abstaining probability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3827-3831

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jr. French, R. P. John, A formal theory of social power, Psychological Review, vol. 63, May 1956, pp.181-194, doi: 10. 1037/h0046123.

Google Scholar

[2] S. Mandra, S. Fortunato, and C. Castellano, Coevolution of Glauber-like Ising dynamics and topology, Physical Review E, vol. 80, November 2009, doi: 10. 1103/PhysRevE. 80. 056105.

DOI: 10.1103/physreve.80.056105

Google Scholar

[3] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulations, JASSS, vol. 5, no. 3, (2002).

Google Scholar

[4] M. Granovetter, Threshold models of collective behavior, Am. J. Sociol., vol. 83, no. 6, May 1978, pp.1420-1443.

Google Scholar

[5] P. Clifford and A. Sudbury, A model for spatial conflict, Biometrika, vol. 60, iss. 3, 1973, pp.581-588, doi: 10. 1093/biomet/60. 3. 581.

DOI: 10.1093/biomet/60.3.581

Google Scholar

[6] R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, vol. 3, no. 4, August 1975, pp.643-663.

DOI: 10.1214/aop/1176996306

Google Scholar

[7] S. Redner, A Guide to First-passage Processes, Cambridge University Press, (2001).

Google Scholar

[8] R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys., vol. 4, iss. 2, February (1963).

Google Scholar

[9] S. Galam, Sociophysics: A review of Galam models, Int. J. Mod. Phys. C, vol. 19, iss. 3, March 2008, doi: 10. 1142 /S0129183108012297.

DOI: 10.1142/s0129183108012297

Google Scholar

[10] K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, Int. J. Mod. Phys. C, vol. 11, iss. 6, September 2000, pp.1157-1165.

DOI: 10.1142/s0129183100000936

Google Scholar

[11] K. Sznajd-Weron, Dynamical model of Ising spins, Phys. Rev. E, vol. 70, iss. 3, September 2004, doi: 10. 1103/PhysRevE. 70. 037104.

DOI: 10.1103/physreve.70.037104

Google Scholar

[12] P. Erdös and A. Rényi, On random graphs, Publ. Math. Debrecen, vol. 6, 1959, p.290–297.

Google Scholar

[13] P. Erdös, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., vol. 5, 1960, p.17~60.

Google Scholar

[14] J. J. Binney, N. J. Dowrick, A. J. Fisher and M. Newman, The Theory of Critical Phenomena, Oxford University Press, (1992).

Google Scholar