[1]
J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection [M]. Cambridge, MA: MIT press, (1994).
Google Scholar
[2]
J.R. Koza. Genetic Programming Ⅱ: Automatic Discovery of Reusable Programs [M]. Cambridge, MA: MIT press, (1992).
Google Scholar
[3]
J.R. Koza, M.A. Keane, M.J. Streeter, et al. Genetic programming Ⅳ: Routine human-Competitive machine intelligence [M]. Nerwell, MA: Kluwer academic publishers, (2003).
Google Scholar
[4]
H. Mohammad. Analysis on the evolution of the discourse on computer software and programming languages in the light of literary genres and power-knowledge [J]. Computers in Human Behavior, 2010, 26(3): 464-473.
DOI: 10.1016/j.chb.2009.12.005
Google Scholar
[5]
J.R. Koza. Automatic creation of human-competitive programs and controllers by means of genetic programming [J]. Genetic Programming and Evolvable Machines, 2000, 1(2): 121-164.
DOI: 10.1007/s10710-010-9112-3
Google Scholar
[6]
D. Lin, M.Q. Li, J.S. Kou. A theorem on the Convergence of genetic programming [J]. Journal of Xiamen University (Natural Science), 2000, 39(1): 125-127.
Google Scholar
[7]
Thomas Back. Handbook of evolutionary computation [M]. Oxford University Press, (1997).
Google Scholar
[8]
J. Qin, L.S. Kang, T.P. Chen. The convergence analysis and algorithm improvement of computation algorithm [J]. Computer Engineering and Application, 2003(19): 91-93.
Google Scholar
[9]
M. Vose, A.H. Wright. Simple genetic algorithms with linear fitness [J]. Evolutionary Computation, 1995, 2(4): 347-368.
DOI: 10.1162/evco.1994.2.4.347
Google Scholar
[10]
A.H. Wright, M. Vose. Finiteness of the fixed point for Simple genetic algorithms [J]. Evolutionary Computation, 1996, 3(3): 299-309.
DOI: 10.1162/evco.1995.3.3.299
Google Scholar
[11]
G. Rudolph. Convergence analysis of canonical genetic algorithm [J]. IEEE Tran Neural Network, 1994, 5(1): 96-101.
Google Scholar
[12]
R. Cerf. Asymptotic convergence of genetic algorithms [J]. Advance in applied probability, 1998, 30(2): 521-550.
DOI: 10.1239/aap/1035228082
Google Scholar
[13]
J. Qin, L.S. Kang. A convergence analysis framework for multi-objective optimization evolutionary algorithm [J]. Computer Application Reasearch, 2005(2): 68-70.
Google Scholar
[14]
J. Suzuki. A further result on the markov chain model of genetic algorithms and its application to a simulated annealing-like strategy [J]. IEEE Tran on systems, Man and Cybernetics-part B: Cybernetics, 1998(1): 95-102.
DOI: 10.1109/3477.658583
Google Scholar
[15]
A. Trouve. The evolutionary computation and simulated annealing [J], SIAM journal on control and optimization, 1997(34): 966-986.
Google Scholar
[16]
Q.H. Duan. The convergence theory and strategies for evolutionary algorithm [Ph. D]. Xi'an: Xi'an Jiaotong University, (2002).
Google Scholar
[17]
J.S. Zhang, Z.B. Xu, Y. Liang. The whole annealing genetic algorithm and its convergence necessaryand sufficient condition [J]. Science in China (Series E), 1997, 27(2): 154-164.
Google Scholar
[18]
W.X. Zhang, Z.B. Xu, Z.K. Nie, et al. Probability convergence theorems of genetic algorithms [J]. Journal of Engineering Mathematics, 2001, 18(4): 1-11.
Google Scholar
[19]
X.M. Dai, R. Sun, R.M. Zou, et al. Global convergence analysis of non-crossover genetic algorithm and its application to optimization [J]. Journal of systems engineering and electronics, 2002, 13(2): 84-91.
Google Scholar
[20]
J. Jana, R. Zbynek. Influence of multiple crossover and mutation to the convergence of genetic optimization (Article number 4630326) [C]. Proceedings on the 17th international conference on microwaves, radar and wireless communications (MIKON 2008), Wroclaw, Poland, May 19-May 21, 2008: 419-423.
Google Scholar