[1]
S. Daneshvar, H. Ghassemian, MRI and PET image fusion by combining IHS and retina-inspired models, , Information Fusion, vol. 11, pp.114-123, Feb (2010).
DOI: 10.1016/j.inffus.2009.05.003
Google Scholar
[2]
Z. Zhang, R. S. Blum. A categorization of multiscale decomposition based image fusion schemes with a performance studey for a digital camera application, , Proceedings of the IEEE, vol. 87, pp.1315-1326, Aug (1999).
DOI: 10.1109/5.775414
Google Scholar
[3]
P. T. Burt, E. H. Andelson, The Laplacian pyramid as a compact image code, , IEEE Transactions on Communications, vol. 31, p.532–540, Apr (1983).
DOI: 10.1109/tcom.1983.1095851
Google Scholar
[4]
V. S. Petrovic and C. S. Xydeas, Gradient-based multiresolution image fusion, IEEE Trans. Image Process, vol. 13, pp.228-237, Feb (2004).
DOI: 10.1109/tip.2004.823821
Google Scholar
[5]
G. Pajares, J. Cruz, A wavelet-based fusion tutorial, Pattern Recognition, vol. 37, pp.1855-1872, Sep (2004).
DOI: 10.1016/j.patcog.2004.03.010
Google Scholar
[6]
M. Beaulieu, S. Foucher, L. Gagnon, Multi-spectral image resolution refinement using stationary wavelet transform, in: Proceedings of the International Geoscience and Remote Sensing Symposium, , p.4032–4034, (1989).
DOI: 10.1109/igarss.2003.1295352
Google Scholar
[7]
J. J. Lewis, R. J. O'Callaghan, S. G. Nikolov, D. R. Bull, C. N. Canagarajah, Region-based image fusion using complex wavelets, in: Proceedings of the 7th International Conference on Image Fusion, p.555–562, (2004).
DOI: 10.1016/j.inffus.2005.09.006
Google Scholar
[8]
Chen, J. P. Zhang, Y. Zhang, Remote sensing image fusion based on ridgelet transform, in: Proceedings of International Conference on Geoscience and Remote Sensing Symposium, , 2005, p.1150–1153.
DOI: 10.1109/igarss.2005.1525320
Google Scholar
[9]
L. Tessens, A. Ledda, A. Pizurica, W. Philips, Extending the depth of field in microscopy through curvelet-based frequency-adaptive image fusion, in: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, , pp. I-861–I-864, (2007).
DOI: 10.1109/icassp.2007.366044
Google Scholar
[10]
L. D. Cunha, J. P. Zhou, The nonsubsampled contourlet transform: theory, design, and applications, IEEE Transactions on Image Processing, vol. 15, p.3089–3101, Oct (2006).
DOI: 10.1109/tip.2006.877507
Google Scholar
[11]
YU Wen-guang, WANG Wei-ping , Hou Hong-tao, LI Qun. Parallel Agent-based simulation on multi-core CPU and GPU heterogeneous platforms, Systems Engineering and Electronics, vol. 34, pp.1716-1722, Aug (2012).
Google Scholar
[12]
NVIDA, CUDA C Programming Guide 3. 2[EB/OL]. http: /developer. download. nvi dia. com/ computer/cuda/3_2/toolkit/ docs/CUDA_C_Programming_Guide. pdf.
DOI: 10.1017/9781108855273.018
Google Scholar
[13]
NVIDA CUDA [EB/OL]. http: /www. nvidia. com/object/cuda_home_ new. html.
Google Scholar
[14]
Harish P, Narayanan P J. Accelerating large graph algorithms on the GPU using DUDA [c], " pp.197-208, Dec 2007[Pro. 14th Int'l Conf. High Performance Computing(HiPC, 07)].
DOI: 10.1007/978-3-540-77220-0_21
Google Scholar
[15]
Katz G J, Kider J T, Jr. All-pairs shortest-paths for large graphs on the GPU[C], [Proc. of the 23rd ACM].
Google Scholar
[16]
DI Peng, HU Chang-jun, LI Jian-jiang. Efficient method for histogram generation on GPU, , Computer Science, vol. 39, pp.304-307, Mar (2012).
Google Scholar