Polarization Imaging Target Detection Method by Imitating Dragonfly Compound Eye LF-SF Mechanism

Article Preview

Abstract:

Recently, water surface target detection and tracking for sea, lake, or river are challenging research topics. This paper presents a framework of target detection and tracing based on three-channel synchronization polarization imaging and imitation dragonfly compound eye LF-SF (large field-small field) mechanism. This framework can make full use of the advantages of polarization sensitivity of the compound eyes of a dragonfly, and be useful for effective water surface target detection and motion vector estimation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3881-3884

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. O'Neil, R.A. Neville, V. Thomson. The Arctic Marine Oilspill Program (AMOP) remote sensing study. Environmental Protection Service report series. Canada, (1983).

Google Scholar

[2] S. Kim, Y. g Yang, J. Lee. Horizontal small target detection with cooperative background estimation and removal filters. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2011, 1761-1764.

DOI: 10.1109/icassp.2011.5946843

Google Scholar

[3] S. Taylor. 0. 45- to 1. 1 -um spectra of Prudhoe crude oil and of beach materials in Prince William Sound, Alaska. Special report, 1992, 92(5): 8-22.

Google Scholar

[4] R. Shirvany, M. Chabert, J. Y. Tourneret. Ship and Oil-Spill Detection Using the Degree of Polarization in Linear and Hybrid/Compact Dual-Pol SAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 885-892.

DOI: 10.1109/jstars.2012.2182760

Google Scholar

[5] J. S. Harchanko, D. B. Chenault. Water-surface object detection and classification using imaging polarimetry. In Proceedings of SPIE, 2005, 588815, doi: 10. 1117/12. 623542.

DOI: 10.1117/12.623542

Google Scholar

[6] A. Ondini, G. Marsiglia, L. Fortunato, et al. Techniques for detection of multiple, extended, and low contrast targets in infrared maritime scenarios. Optical Engineering, 2006, 45(12): 126401- 126405.

DOI: 10.1117/1.2403844

Google Scholar

[7] Z. L. Szpak, J. R. Tapamo. Maritime surveillance: Tracking ships inside a dynamic background using a fast level-set. Expert Systems with Applications, 2011, 38(6): 6669-6680.

DOI: 10.1016/j.eswa.2010.11.068

Google Scholar

[8] D. Bloisi, L. Iocchi, M. Fiorini, et al. Camera based target recognition for maritime awareness. Proceedings of the 15th International Conference on Information Fusion, 2012: 1982-(1987).

Google Scholar

[9] W. B. Wang, J. H. Ali, R. R. Alfano, et al. Spectral Polarization Imaging of Human Rectum-Membrane-Prostate Tissues. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 288-293.

DOI: 10.1109/jstqe.2003.813301

Google Scholar

[10] G. Horvath , J. Zeil . Kuwait oil lakes as insect traps. Nature, 1996, 379(7): 303-304.

DOI: 10.1038/379303a0

Google Scholar

[11] F. C. Huang, M. Li, A. Y. Shi, et al. Insert visual system inspired small target detection for multi-spectral remotely sensed images. Journal of Communication, 2011, 32(9): 88- 95.

Google Scholar

[12] L. Z. Xu, L. Min, A. Y. Shi, et al. Feature Detector Model for Mult-Spectral Remote Sensing Image Inspired by Insert Visual System. Acta Electronica Sinica, 2011, 39(11): 2497-2501.

Google Scholar

[13] L. Z. Xu, A. Y. Shi, F. C. Huang, et al. A perceptual and computational mechnism for bionic compound eye systems with multi-source information fusion. CAAI Transaction on Intelligent Systems, 2008, 3(4): 328-335.

Google Scholar

[14] L. Min, L. Z. Xu, A. Y. Shi, et al. Image reconstruction algorithm inspired by a bionic compound eye system. CAAI Transaction on Intelligent Systems, 2009, 4(2): 180-187.

Google Scholar

[15] L. Z. Xu, X. F. Li, S. X. Yang. Intelligent Information Processing and System Optimization. Intelligent Automation and Soft Computing, 2011, 17(7): 829-831.

DOI: 10.1080/10798587.2011.10643191

Google Scholar