[1]
S. Haykin, Neural Networks, A Comprehensive Foundations, second ed., Prentice-Hall, Englewood Cliffs, NJ, (1999).
Google Scholar
[2]
K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop, Neural network for control systems (a survey), Automatica 28, 1992, p.1083–1112.
DOI: 10.1016/0005-1098(92)90053-i
Google Scholar
[3]
K.S. Narendra, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks 1 (1), 1990, p.4–27.
DOI: 10.1109/72.80202
Google Scholar
[4]
P.S. Sastry, G. Santharam, K.P. Unnikrishnan, Memory networks for identification and control of dynamical systems, IEEE Trans. Neural Networks 5 , 1994, p.306–320.
DOI: 10.1109/72.279193
Google Scholar
[5]
P. Frasconi, M. Gori, G. Soda, Local feedback multilayered networks, Neural Compute. 4 , 1992, p.120–130.
DOI: 10.1162/neco.1992.4.1.120
Google Scholar
[6]
R. Babuska, Fuzzy Modeling for Control, Kluwer, Norwell, MA, NY, (1998).
Google Scholar
[7]
C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neuro—Fuzzy Synergism to Intelligent Systems, Prentice-Hall, Englewood Cliffs, NJ, (1996).
Google Scholar
[8]
C.J. Lin, C.H. Chen, Identification and prediction using recurrent compensatory neuro-fuzzy systems, Fuzzy Sets and Systems 150 (2) , 2005, p.307–330.
DOI: 10.1016/j.fss.2004.07.001
Google Scholar
[9]
J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Systems Man Cybernet. 23 (3) , 1993, p.665–685.
DOI: 10.1109/21.256541
Google Scholar
[10]
J. Adamy, R. Kempf, Regularity and chaos in recurrent fuzzy systems, Fuzzy Sets and Systems 140 (2) , 2003, p.259–284.
DOI: 10.1016/s0165-0114(02)00526-2
Google Scholar
[11]
Y. Gao, M.J. Er, NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches, Fuzzy Sets and Systems 150 (2), 2005, p.331–350.
DOI: 10.1016/j.fss.2004.09.015
Google Scholar
[12]
A. Nürnberger, A hierarchical recurrent neuro-fuzzy model for system identification, Internat. J. Approx. Reason. 32 (2–3), 2003, p.153–170.
DOI: 10.1016/s0888-613x(02)00081-6
Google Scholar
[13]
P.A. Mastorocostas, J.B. Theocharis, A recurrent fuzzy-neural model for dynamic system identification, IEEE Trans. Systems Man Cybernet. Part B: Cybernet. 32, 2002, p.176–190.
DOI: 10.1109/3477.990874
Google Scholar
[14]
I. Baruch, E. Gortcheva, Fuzzy neural model for nonlinear systems identification, in: Proc. AARTC IFAC Workshop, Cancun, Mexico, April 15–17, 1998, p.283–288.
Google Scholar
[15]
I. Baruch, J.M. Flores, F. Nava, I.R. Ramirez, B. Nenkova, An advanced neural network topology and learning applied for identification and control of a D.C. motor, in: Proc. First Int. IEEE Symp. on Intelligent Systems, Varna, Bulgaria, September, 2002, p.289.
DOI: 10.1109/is.2002.1044270
Google Scholar
[16]
I. Baruch, J.M. Flores, F. Thomas, R. Garrido, Adaptive neural control of nonlinear systems, in: G. Dorffner, H. Bischof, K. Hornik (Eds. ), Proc. Int. Conf. on NNs, ICANN 2001, Vienna, Austria, August 2001, Lecture Notes in Computer Science, Vol. 2130, Springer, Berlin, Heidelberg, NY, 2001, p.930.
DOI: 10.1007/3-540-44668-0
Google Scholar
[17]
I. Baruch, L.A. Hernandez, J. Barrera-Cortes, Adaptive discrete-time sliding mode control using recurrent neural networks, in: Proc. Second IFAC Symp. on System, Structure and Control, Oaxaca, Mexico, December 8–10, (2004).
DOI: 10.1016/s1474-6670(17)30558-x
Google Scholar