A General Architecture for Monitoring Data Storage with OpenStack Cloud Storage and RDBMS

Article Preview

Abstract:

The process monitoring and fault diagnosis is one of the important problems in the process industry. Archived monitoring data is valuable for long-term analysis and decision making. In this paper, we propose a general architecture to manage and storage archived monitoring data. It has been implemented within an archiving terabytes of monitoring data in metallurgy industry. It is an effective way to solve the problems of the efficiency and expandability via practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

739-742

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Zeng, Y. Zhao, K. Ou, and W. Song, Research on cloud storage architecture and key technologies, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, Seoul, Korea, 2009, pp.1044-1048.

DOI: 10.1145/1655925.1656114

Google Scholar

[2] J. Zhou, N. Bruno, M. Wu, P. Larson, R. Chaiken, and D. Shakib, SCOPE: parallel databases meet MapReduce, vol. 21, pp.611-636, (2012).

DOI: 10.1007/s00778-012-0280-z

Google Scholar

[3] L. Kolb, A. Thor and E. Rahm, Multi-pass sorted neighborhood blocking with MapReduce, vol. 27, pp.45-63, (2012).

DOI: 10.1007/s00450-011-0177-x

Google Scholar

[4] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, \mathcal{MD}-HBase: design and implementation of an elastic data infrastructure for cloud-scale location services, pp.1-31, (2012).

DOI: 10.1007/s10619-012-7109-z

Google Scholar

[5] K. McKusick and S. Quinlan, GFS: evolution on fast-forward, Commun. ACM, vol. 53, pp.42-49, (2010).

DOI: 10.1145/1666420.1666439

Google Scholar

[6] H. T. Vo, C. Chen and B. C. Ooi, Towards elastic transactional cloud storage with range query support, Proc. VLDB Endow., vol. 3, pp.506-514, (2010).

DOI: 10.14778/1920841.1920907

Google Scholar

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, Bigtable: A Distributed Storage System for Structured Data, ACM Trans. Comput. Syst., vol. 26, pp.1-26, (2008).

DOI: 10.1145/1365815.1365816

Google Scholar

[8] A. Lakshman and P. Malik, Cassandra: a decentralized structured storage system, SIGOPS Oper. Syst. Rev., vol. 44, pp.35-40, (2010).

DOI: 10.1145/1773912.1773922

Google Scholar

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo: amazon's highly available key-value store, SIGOPS Oper. Syst. Rev., vol. 41, pp.205-220, (2007).

DOI: 10.1145/1323293.1294281

Google Scholar

[10] D. Zhiming, G. Limin and Y. Qi, RDB-KV: A Cloud Database Framework for Managing Massive Heterogeneous Sensor Stream Data, in Intelligent System Design and Engineering Application (ISDEA), 2012 Second International Conference on, 2012, pp.653-656.

DOI: 10.1109/isdea.2012.410

Google Scholar

[11] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi, LogBase: a scalable log-structured database system in the cloud, Proc. VLDB Endow., vol. 5, pp.1004-1015, (2012).

DOI: 10.14778/2336664.2336673

Google Scholar

[12] L. L. You, K. T. Pollack, D. D. E. Long, and K. Gopinath, PRESIDIO: A Framework for Efficient Archival Data Storage, Trans. Storage, vol. 7, pp.1-60, (2011).

DOI: 10.1145/1970348.1970351

Google Scholar

[13] B. Cutt and R. Lawrence, Managing data quality in a terabyte-scale sensor archive, in Proceedings of the 2008 ACM symposium on Applied computing, Fortaleza, Ceara, Brazil, 2008, pp.982-986.

DOI: 10.1145/1363686.1363915

Google Scholar

[14] D. Wang, An Efficient Cloud Storage Model for Heterogeneous Cloud Infrastructures, vol. 23, pp.510-515, (2011).

DOI: 10.1016/j.proeng.2011.11.2539

Google Scholar

[15] T. Rabl, S. G, Mez-Villamor, M. Sadoghi, V. Munt, S-Mulero, H. Jacobsen, and S. Mankovskii, Solving big data challenges for enterprise application performance management, Proc. VLDB Endow., vol. 5, pp.1724-1735, (2012).

DOI: 10.14778/2367502.2367512

Google Scholar