Onset of Triply Diffusive Convection in a Maxwell Fluid Saturated Porous Layer

Article Preview

Abstract:

The linear stability of triply diffusive convection in a binary Maxwell fluid saturated porous layer is investigated. Applying normal mode analysis , the criterion for the onset of stationary and oscillatory convection is obtained. The modified Darcy-Maxwell model is used as the analysis model. This allows us to make a thorough investigation of the processes of viscoelasticity and diffusions that causes the convection to set in through oscillatory rather than stationary. The effects of the parameters of Vadasz number, normalized porosity parameter, relaxation parameter, Lewis number and solute Rayleigh number are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2580-2585

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. S. Turner: Annu. Rev. Fluid Mech. Vol. 6 (1974), p.37.

Google Scholar

[2] O. V. Trevisan and A. Bejan: Adv. Heat Transfer Vol. 20 (1990), p.315.

Google Scholar

[3] D. A. Nield and A. Bejan: Convection in Porous Media, 3rd ed (Springer-Verlag, New York 2006).

Google Scholar

[4] K. Vafai: Handbook of Porous Media (Marcel Dekker, New York 2000).

Google Scholar

[5] J. Azaiez and M. Sajjadi: Phys. Rev. E Vol. 85 (2012), p.026306.

Google Scholar

[6] I. S. Shivakumara, Jinho Lee , S. Suresh Kumar, and N. Devaraju: Arch. Appl. Mech. Vol. 81 (2011), p.1697.

Google Scholar

[7] N. Rudraiah and P. G. Siddheshwar: Heat and Mass Transfer Vol. 33 (1998), p.287.

Google Scholar

[8] E. T. Degens, R. P. Herzen, H. K. Wong, et. al.: Geol. Rundschau Vol. 62 (1973), p.245.

Google Scholar

[9] A. J. Pearlstein, R. M. Harris, and G. Terrones: J. Fluid Mech. Vol. 202 (1989), p.443.

Google Scholar

[10] John Tracey: Continuum Mech. Thermodyn. Vol. 8 (1996), p.361.

Google Scholar

[11] John Tracey: Adv. Water Res. Vol. 22 (1998), p.399.

Google Scholar

[12] Salvatore Rionero: Int. J. Eng. Sci. Vol. 48 (2010), p.1519.

Google Scholar

[13] B. Straughan and J. Tracey: Acta Mech. Vol. 133 (1999), p.219.

Google Scholar

[14] Guillermo Terrones: Phys. Fluids A Vol. 5 (1993), p.2172.

Google Scholar

[15] M. S. Malashetty and Bharati S. Biradar: Phys. Fluids Vol. 23 (2011), p.064109.

Google Scholar

[16] S. Wang and W. Tan: Phys. Lett. A Vol. 372 (2008), p.3046.

Google Scholar

[17] M. C. Kim, S. B. Lee, and S. Kim: Int. J. Heat Mass Transfer Vol. 46 (2003), p.5065.

Google Scholar

[18] M. S. Malashetty, W. Tan, and M. Swamy: Phys. Fluids Vol. 21 (2009), p.084101.

Google Scholar

[19] S. N. Gaikwad, M. S. Malashetty, and K. Rama Prasad: Transp. Porous Media Vol. 80 (2009), p.537.

Google Scholar

[20] S. N. Gaikwad, M. S. Malashetty, and K. Rama Prasad: Appl. Math. Model. Vol. 33 (2009), p.3617.

Google Scholar

[21] R.P. Chhabra and J.F. Richardson: Non-Newtonian Flow in the Process Industries: Fundamentals and Engineering Applications (Butterworth-Heinemann, Oxford 1999).

Google Scholar

[22] S. Wang and W. Tan: Int. J. Heat Fluid Flow Vol. 32 (2011), p.88.

Google Scholar