[1]
J. Yang, Existence of solutions for semilinear elliptic problems without (PS) condition, Proceedings of the American Mathematical Society, Vol. 32 (2003), pp.1355-1366.
DOI: 10.1090/s0002-9939-03-07088-6
Google Scholar
[2]
I. Birindelli and F. Demengel, Existence of solutions for semi-linear equations involving the p-Laplacian: the non coercive case, Calc. Var. Vol. 20 (2004), pp.343-366.
DOI: 10.1007/s00526-003-0193-1
Google Scholar
[3]
F.J. SA. Correa, G.M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc. Vol. 74 (2006), pp.263-277.
DOI: 10.1017/s000497270003570x
Google Scholar
[4]
J.B. Su, Z.Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differential Equations Vol. 238 (2007), p.201–219.
DOI: 10.1016/j.jde.2007.03.018
Google Scholar
[5]
D. Motreanu, V.V. Motreanu and N.S. Papageorgiou, A multiplicity theorem for problems with thep-Laplacian, Nonlinear Anal. Vol. 68 (2008), p.1016–1027.
DOI: 10.1016/j.na.2006.12.002
Google Scholar
[6]
X. Wu and K.K. Tan, n existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal. Vol. 65 (2006), p.1334–1347.
DOI: 10.1016/j.na.2005.10.010
Google Scholar
[7]
H.R. Quoirin, Lack of coercivity in a concave–convex type equation, Calc. Var. 37 (2010), p.523–546.
DOI: 10.1007/s00526-009-0275-9
Google Scholar
[8]
A. Ambrosetti, J.G. Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. Vol. 137 (1996), pp.219-242.
DOI: 10.1006/jfan.1996.0045
Google Scholar
[9]
Ph. Clement, M.G. Huidobro, R. Manasevich, K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Vol. 11 (2000), p.33–62.
DOI: 10.1007/s005260050002
Google Scholar