Extended Finite Element Analysis of Crack-Void Interaction Problems in Viscoelastic Materials

Article Preview

Abstract:

Due to the incorporation of enrichment functions in the displacement approximation, the mesh in the extended finite element method (XFEM) can be independent of the internal discontinuities. In the present paper, crack-void interaction problems in viscoelastic materials are investigated with the XFEM. The effect of the distance between crack and void on crack opening displacement is mainly studied in time domain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3186-3189

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.T. Ang, D.L. Clements, A boundary element method for determining the effect of holes on the stress distribution around a crack, Int. J. Numer. Meth. Eng. 23 (1986) 1727-1737.

DOI: 10.1002/nme.1620230912

Google Scholar

[2] J.B. Lai, X. Zhang, J. Schijve, An investigation of a hole-edge crack problem by a combined complex variable and least square method, Eng. Fract. Mech. 39 (1991) 713-737.

DOI: 10.1016/0013-7944(91)90221-l

Google Scholar

[3] J.S. Kuang, Y.H. Wang, Analysis of interfacial cracks emanating from a hole in a bi-material plate, Eur. J. Mech. A/Solids 18 (1999) 465-479.

DOI: 10.1016/s0997-7538(99)00116-3

Google Scholar

[4] S.A. Fawaz, B. Andersson, Accurate stress intensity factor solutions for corner cracks at a hole, Eng. Fract. Mech. 71 (2004) 1235-1254.

DOI: 10.1016/s0013-7944(03)00207-8

Google Scholar

[5] Y.Z. Chen, Z.X. Wang, X.Y. Lin, A Trefftz method for evaluating the T-stress for cracks emanating from a hole in a rectangular plate, Commun. Numer. Meth. Engng 24 (2008) 1853-1862.

DOI: 10.1002/cnm.1072

Google Scholar

[6] X.Q. Yan, C.Q. Miao, A numerical method for a void-crack interaction under cyclic loads, Acta Mech. 223 (2012) 1015-1029.

DOI: 10.1007/s00707-011-0596-6

Google Scholar

[7] N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng. 46 (1999) 131-150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j

Google Scholar

[8] H.H. Zhang, L.X. Li, Modeling inclusion problems in viscoelastic materials with the extended finite element method, Finite Elem. Anal. Des. 45 (2009) 721-729.

DOI: 10.1016/j.finel.2009.06.006

Google Scholar

[9] N. Sukumar, D.L. Chopp, N. Moes, et al, Modeling holes and inclusion by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Eng. 190 (1997) 6183-6200.

DOI: 10.1016/s0045-7825(01)00215-8

Google Scholar

[10] H.H. Zhang, G. Rong, L.X. Li, Numerical study on deformations in a cracked viscoelastic body with the extended finite element method, Eng. Anal. Bound. Elem. 34 (2010) 619-624.

DOI: 10.1016/j.enganabound.2010.02.001

Google Scholar