Measurement and Analysis on Cell Morphology of Polycarbonate Foam in Different Processing Parameters

Article Preview

Abstract:

The purpose of this research is to analysis on cell morphology of PC (Polycarbonate) foam in different processing parameters. In this study, foamed PC was produced using a dynamic simulation foaming setup designed by ourselves. Cell morphology was compared as different temperatures, pressures, gas saturation time, pressure drop rates and different shear rates were used. Cell morphology of foamed samples was measured by using scanning electron microscopy(SEM). It was found that foamed samples with better morphology could be obtained as pressure, pressure drop rate and gas saturation time increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Martini, J. ; Waldman, F. A. ; Suh, N. P. The Production and Analysis of Microcellular Thermoplastic Foams; SPE ANTEC Technical Papers XXVIII; Society of Plastics Engineers: Greenwich, CT, (1982) pp.674-676.

Google Scholar

[2] Martini, J. E. The Production and Analysis of Microcellular Foam. S. M. Thesis, Massachusettes Institute of Technology, Cambridge, MA, (1981).

Google Scholar

[3] Doroundani, S. ; Park, C. B.; Kortschot, M. T. Processing and Characterization of Microcellular Foamed High-Density Polyethylene/lsotactic Polypropylene Blends. Polym. Eng. Sci. (1998), P. 1205-1215.

DOI: 10.1002/pen.10289

Google Scholar

[4] Rachtanapun, P.; Selke, S. E.; Matuana, L. M. Relationship Between Cell Morphology and Impact Strength of Microcellular Foamed High-Density Polyethylene/Polypropylene Blends. Polym. Eng. Sci. (2004), P. 1551-1560.

DOI: 10.1002/pen.20152

Google Scholar

[5] Rachtanapun, P.; Selke, S. E.; Matuana, L. M. Microcellular Foam of Polymer Blends of HDPE/PP and Their Composites with Wood Fiber. J. Appl. Polym. Sci. 2003, 88, 2842-2850.

DOI: 10.1002/app.12170

Google Scholar

[6] Lee, Y. H.; Wang, K. H.; Park, C. B.; Sain, M. Effects of Clay Dispersion on the Foam Morphology of LDPE/Clay Nanocomposites. J. Appl. Polym. Sci. (2007), P. 2129-2134.

DOI: 10.1002/app.24908

Google Scholar

[7] Sun, X. H.; Liu, H. J.; Li, G.; Liao, X.; He, J. S. Investigation on the Cell Nucleation and Cell Growth in Microcellular Foaming by Means of Temperature Quenching. J. Appl. Polym. Sci. (2004), P. 163-171.

DOI: 10.1002/app.20445

Google Scholar

[8] Wang, J.; Cheng, X.G.; Zheng, X. J.; Yuan, M. J.; He, J. S. Preparation and Characterization of Microcellular Polystyrene/Polystyrene Ionomer Blends with Supercritical Carbon Dioxide. J. Polym. Sci. Part B: Polym Phys. (2003), P. 368-377.

DOI: 10.1002/polb.10371

Google Scholar

[9] Baldwin, D. F.; Park, C. B.; Suh, N. P. A Microcellular Processing Study of Poly( Ethylene Terephthalate) in the Amorphous and Semicrystalline States. Part I: Microcell Nucleation. Polym. Eng. Sci. (1996), P. 1437-1445.

DOI: 10.1002/pen.10538

Google Scholar

[10] Matuana, L. M.; Park, C. B.; Balatinecz, J. J. Cell Morphology and Property Relationships of Microcellular Foamed PVC/Wood-Fiber Composites. Polym. Eng. Sci. (1998), P. 1862-1872.

DOI: 10.1002/pen.10356

Google Scholar

[11] Han, X. M.; Koelling, K. W.; Tomasko, D. L.; Lee, L. J. Continuous Microcellular Polystyrene Foam Extrusion With Supercritical CO2. Polym. Eng. Sci. (2002), P. 2094-2106.

DOI: 10.1002/pen.11100

Google Scholar

[12] Han, X. M.; Koelling, K. W.; Tomasko, D. L.; Lee, L. J. Effect of Die Temperature on the Morphology of Microcellular Foams. Polym. Eng. Sci. (2003), P. 1206-1220.

DOI: 10.1002/pen.10102

Google Scholar

[13] Chong, T. H.; Ha, Y. W.; Jeong, D. J. Effect of Dissolved Gas on the Viscosity of HIPS in the Manufacture of Microcellular Plastics. Polym. Eng. Sci. (2003), P. 1337-1344.

DOI: 10.1002/pen.10113

Google Scholar

[14] Seeler, K. A.; Kumar, V. Tension-tension fatigue of microcellular polycarbonate: Initial results . J. Rein. Plast. Comp. (1993), P. 359-376.

DOI: 10.1177/073168449301200308

Google Scholar

[15] Kumar, V.; Michael V. W. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. J. Eng. Mater. Technol. (1994), P. 439-445.

Google Scholar

[16] Huang, Q.; Seibig, B.; Paul, D. Polycarbonate hollow fiber membranes by melt extrusion. J. Membr. Sci. (1999), P. 287-291.

DOI: 10.1016/s0376-7388(99)00122-2

Google Scholar

[17] Richard, G.; Louis, E. D. Continuous extrusion of microcellular polycarbonate . Polym. Eng. Sci. (2003), P. 1361-1377.

Google Scholar

[18] Tang, M.; Huang, W. H.; Chen Y.P. Comparisons of the sorption and diffusion of supercritical carbon dioxide into polycarbonate and polysulfone. J. Appl. Polym. Sci. (2004), P. 474-482.

DOI: 10.1002/app.20895

Google Scholar

[19] John, W. S. L.; Wang, K.Y.; Park, C. B. Challenge to extrusion of low-density microcellular polycarbonate foams using supercritical carbon dioxide. Ind. Eng. Chem. Res. (2005), 44(1), P. 92-99.

DOI: 10.1021/ie0400402

Google Scholar

[20] Huang, Q.; Klotzer, R.; Seibig, B.; Paul, D. Extrusion of Microcellular Polysulfone Using Chemical Blowing Agents. J. Appl. Polym. Sci. (1998), 69, P. 1753-1760.

DOI: 10.1002/(sici)1097-4628(19980829)69:9<1753::aid-app9>3.0.co;2-a

Google Scholar

[21] Kaewmesri, W.; Rachtanapun, P.; Pumchusak, J. Effect of Solvent Plasticization on Polypropylene Microcellular Foaming Process and Foam Characteristics. J. Appl. Polym. Sci. (2008), 107, P. 63-70.

DOI: 10.1002/app.27103

Google Scholar