[1]
J.L. Adler and V.J. Blue, Toward the design of intelligent traveler information systems. Transportation Research Part C Vol. 6 (1998) 157.
DOI: 10.1016/s0968-090x(98)00012-6
Google Scholar
[2]
W. Barfield and F. Mannering, Behavioral and human factors issues in advanced traveler information systems. Transportation Research Part C Vol. 1 (1993) 105.
DOI: 10.1016/0968-090x(93)90007-3
Google Scholar
[3]
M. Ben-Akiva, A. de Palma and I. Kaysi, Dynamic network models and driver information systems. Transportation Research Part C Vol. 25 (1991) 251.
DOI: 10.1016/0191-2607(91)90142-d
Google Scholar
[4]
H. Dia, An agent-based approach to modelling driver route choice behaviour under the influence of real-time information. Transportation Research Part C Vol. 10 (2002) 331.
DOI: 10.1016/s0968-090x(02)00025-6
Google Scholar
[5]
H. Mahmassani and R. -C. Jou, Transferring insights into commuter behavior dynamics from laboratory experiments to field surveys. Transportation Research Part A Vol. 34 (2000) 243.
DOI: 10.1016/s0965-8564(99)00003-8
Google Scholar
[6]
P. Thakuriah and A. Sen, Quality of information given by advanced traveler information systems. Transportation Research Part C Vol. 4 (1996) 249.
DOI: 10.1016/s0968-090x(97)82900-2
Google Scholar
[7]
H.K. Lo and W.Y. Szeto, A methodology for sustainable traveler information services. Transportation Research Part B Vol. 36 (2002) 113.
DOI: 10.1016/s0191-2615(00)00040-0
Google Scholar
[8]
H. Yang, Multiple equilibrium behavior and advanced traveler information systems with endogenous market penetration. Transportation Research Part B Vol. 32 (1998) 205.
DOI: 10.1016/s0191-2615(97)00025-8
Google Scholar
[9]
H. Yang, Evaluating the benefit of a combined route guidance and road pricing system in a network with recurrent congestion. Transportation Vol. 26 (1999) 299.
Google Scholar
[10]
H. Yang, and Q. Meng, Modeling user adoption of advanced traveler information systems: dynamic evolution and stationary equilibrium. Transportation Research Part A Vol. 35 (2001) 895.
DOI: 10.1016/s0965-8564(00)00030-6
Google Scholar
[11]
Y. Yin, and H. Yang, Simultaneous determination of the equilibrium market penetration and compliance rate of advanced traveler information systems. Transportation Research Part A Vol. 37 (2003) 165.
DOI: 10.1016/s0965-8564(02)00011-3
Google Scholar
[12]
J. L. Adler, and M.G. McNally, In-laboratory experiments to investigate driver behavior under advanced traveler information systems. Transportation Research Part C Vol. 2 (1994) 149.
DOI: 10.1016/0968-090x(94)90006-x
Google Scholar
[13]
J.L. Schofer, A. Khattak and F.S. Koppelman, Behavioral issues in the design and evaluation of advanced traveler information systems. Transportation Research Part C Vol. 1 (1993) 107.
DOI: 10.1016/0968-090x(93)90008-4
Google Scholar
[14]
T. Lotan, Effects of familiarity on route choice behavior in the presence of information. Transportation Research Part C Vol. 5 (1997) 225.
DOI: 10.1016/s0968-090x(96)00028-9
Google Scholar
[15]
F. Mannering, S. -G. Kim, L. Ng and W. Barfield, Travelers' preferences for in-vehicle information systems: an exploratory analysis. Transportation Research Part C Vol. 3 (1995) 339.
DOI: 10.1016/0968-090x(96)00014-9
Google Scholar
[16]
M. Wardman, P.W. Bonsall and J.D. Shires, Driver response to variable message signs: a stated preference investigation. Transportation Research Part C Vol. 5 (1997), 389.
DOI: 10.1016/s0968-090x(98)00004-7
Google Scholar
[17]
Y.E. Ge and B.R. Sun, A Class of Travel Time Models Taking into Account Information Quality and Individual Interpretation Abilities. Working Paper, School of Transportation & Logistics, Dalian University of Technology (2011).
Google Scholar
[18]
W.S. Vickrey, Congestion theory and transport investment. American Economic Review Vol. 59 (1969), 251.
Google Scholar
[19]
R. Arnott, A. de Palma and R. Lindsey, Departure time and route choice for the morning traffic commute. Transportation Research Part A Vol. 24 (1990) 209.
DOI: 10.1016/0191-2615(90)90018-t
Google Scholar
[20]
C. Hendrickson and G. Kocur, Schedule delay and departure time decision in a deterministic model. Transportation Science Vol. 15 (1981) 62.
DOI: 10.1287/trsc.15.1.62
Google Scholar
[21]
B. Heydecker, Dynamic equilibrium network design. Transportation and Traffic Theory in the 21st Century, edited by M.A.P. Taylor, Elservier (2002) 349.
DOI: 10.1016/b978-008043926-6/50020-8
Google Scholar
[22]
K.A. Small, The scheduling of consumer activities: work trips. American Economic Review Vol. 72 (1982) 467.
Google Scholar
[23]
D.J. Holden, Wardrop's third principle: urban traffic congestion and traffic policy. Journal of Transport Economics and Policy Vol. 23 (1989) 239.
Google Scholar
[24]
T.L. Friesz, D. Bernstein, Z. Suo and R. Tobin, Dynamic network user equilibrium with state-dependent time lags. Networks and Spatial Economics Vol. 1 (2001) 319.
Google Scholar
[25]
B. Ran and D. Boyce, Modeling Dynamic Transportation Networks: an Intelligent Transportation System Oriented Approach (2nd Edition, Springer-Verlag, Berlin 1996).
Google Scholar
[26]
M. Ben-Akiva and S.R. Lerman, Discrete Choice Analysis: Theory and Application to Travel Demand (The MIT Press, Cambridge, Massachusetts 1985).
Google Scholar
[27]
K. Nagel, Multi-Agent Transportation Simulation. (Draft for a book, 2003).
Google Scholar
[28]
B. Raney, N. Cetin, A. Völlmy, M. Vrtic, K. Axhausen and K. Nagel, An agent-based microsimulation model of Swiss travel: first results. Networks and Spatial Economics Vol. 3 (2003) 23-41.
DOI: 10.1023/a:1022096916806
Google Scholar
[29]
C.F. Daganzo, A finite difference approximation of the kinematic wave model of traffic flow. Transportation Research Part B Vol. 29 (1995) 261.
DOI: 10.1016/0191-2615(95)00004-w
Google Scholar
[30]
M. Carey and Y.E. Ge, Convergence of a discretised travel time model. Transportation Science Vol. 39 (2005) 25.
DOI: 10.1287/trsc.1030.0083
Google Scholar