[1]
ZOU S L,LIU W J,WANG T L et al.The status of Chinese nuclear power industry and the strategic thinking of development [J]. Hunan Social Sciences,2005,1: 104-108.
Google Scholar
[2]
Li X Q.Mechanical properties and defective effects of candidate structural materials of fusion reactor[D].Dalian: Dalian university of technology, 2011.
Google Scholar
[3]
BRAGER H R, STRAALSUND J L, HOLMES J J et al. Irradiation produced defects in austenitic stainless steel[J], Metall, Mater. Trans. B, 1970, 2: 1-12.
DOI: 10.2172/4039123
Google Scholar
[4]
LEE E H, BYUN T S, HUNN J D et al. Origin of hardening and deformation mechanisms in irradiated 316LN austenitic stainless steel [J]. J. Nucl. Mater, 2001, 296: 183-191.
DOI: 10.1016/s0022-3115(01)00566-9
Google Scholar
[5]
Lee E H, Hunn J D, Byun T S et al. Effects of helium on radiation-induced defect microstructure in austenitic stainless steel [J]. J. Nucl. Mater, 2000, 280: 18-24.
DOI: 10.1016/s0022-3115(00)00038-6
Google Scholar
[6]
QIAO J S,HUANG Y N,XIAO X et al.Microstructural evolution of CLAM steel upon high energy electron irradiation at 450 [J] .Journal of University of Science and Technology Beijing, 2009, 31(7): 842-847.
Google Scholar
[7]
KOHON Y, KOHYAMA A, HIROSE T. Mechanical property changes of low activation ferritic/ martensitic steels after neutrion irradiation [J]. Journal of Nuclear Materials, 1999, 271/272: 145.
DOI: 10.1016/s0022-3115(98)00735-1
Google Scholar
[8]
WAKAI E, KIKUCHI K, YAMAMOTO S. Swelling behavior of F82H steel irradiated by triple/dual iron beams [J]. Journal of Nuclear Materials, 2003, 318: 267.
DOI: 10.1016/s0022-3115(03)00122-3
Google Scholar
[9]
ZU X T,ZHU S,WANG L M et al.Effect of 2MeV proton radiation on the microstructure in Zircaloy 4 [J] .Nuclear Power Engineering, 2004, 25 (l): 50-53.
Google Scholar
[10]
WANG Z G.Simulation of radiation effects in structural materials of reactors using high-energy heavy-ion irradiations [J] .Nuclear Physics Review, 2006, 23(2): 155-160.
Google Scholar
[11]
LI Q,HUANG Q Y,YU J N et al.Surface analysis of CLAM steel, EUROFER97 steel and W irradiated in HT-7 Tokamak [J] .Chinese Journal of Nuclear Science and Engineering, 2004, 24 (1): 157.
Google Scholar
[12]
Hohenberg P, Kohn W. Phys. Rev [J]. 1964, B13: 864.
Google Scholar
[13]
ZHAO F,WAN K B,QIAO J S et al.The microstructure and mechanical properties of China low activation martensitic steel [J] .Chinese Journal of Nuclear Science and Engineering, 2007, 27(1): 59-63.
Google Scholar
[14]
Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater, 1996, 223: 138-147.
DOI: 10.1016/s0022-3115(96)00327-3
Google Scholar
[15]
ZHENG L,JIANG C B,SHANG J X et al.Calculating elastic constants of Fe-based cubic magnetic material using first principle [J] .ACTA PHYSICA SINICA, 2007, 56(3): 1532-1537.
DOI: 10.7498/aps.56.1532
Google Scholar
[16]
VOIGT W. Uber die Beziehung zwischen den beiden ELasticitatsconstanten isotroper Korper [J]. Annalen der Physik, 1889, 38: 573-587.
DOI: 10.1002/andp.18892741206
Google Scholar
[17]
REUSS A. Berechnung der Fliebgrenze von Mischkristallen auf Grupd der Plastizitatsbendingung fur Einkristalle [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9: 49-58.
DOI: 10.1002/zamm.19290090104
Google Scholar
[18]
HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65: 349-354.
DOI: 10.1088/0370-1298/65/5/307
Google Scholar
[19]
HILL R. Elastic properties of reinforced solids: Some theoretical principles [J]. Journal of the Mechanics and Physics of Solids, 1963, 11: 357-372.
DOI: 10.1016/0022-5096(63)90036-x
Google Scholar
[20]
KITTEL C, MCEUEN P. Introduction to solid state physic [M]. Wiley New York, (1996).
Google Scholar