Numerical Analysis of Irradiation Effects on Metal Materials of Fusion Reactor

Article Preview

Abstract:

The first wall material in a nuclear fusion reactor endures a series of complex processes, resulting in irradiation damage of its structural materials and eventually questioning its operative safety. Experimental and computer simulation are currently applied to search for irradiation damage. We used, the Material Studio software to model and calculate the crystal structure and mechanical properties, and the CASTEP module, primitive cell of iron, Fe-Cr alloy and Fe-Cr alloy with defects to calculate, analyze, and obtain the values of elastic constants and Young’s modulus. Our results showed that addition of Cr atom to conventional first wall metal materials of nuclear reactor, enhanced endurance by increasing the values of elastic constant and Young’s modulus, but distorted the symmetry of the crystal structure. We preliminarily prove and predict the possibility of the changes of mechanical properties of Low-activation martensite/ferrite under irradiation effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

547-552

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ZOU S L,LIU W J,WANG T L et al.The status of Chinese nuclear power industry and the strategic thinking of development [J]. Hunan Social Sciences,2005,1: 104-108.

Google Scholar

[2] Li X Q.Mechanical properties and defective effects of candidate structural materials of fusion reactor[D].Dalian: Dalian university of technology, 2011.

Google Scholar

[3] BRAGER H R, STRAALSUND J L, HOLMES J J et al. Irradiation produced defects in austenitic stainless steel[J], Metall, Mater. Trans. B, 1970, 2: 1-12.

DOI: 10.2172/4039123

Google Scholar

[4] LEE E H, BYUN T S, HUNN J D et al. Origin of hardening and deformation mechanisms in irradiated 316LN austenitic stainless steel [J]. J. Nucl. Mater, 2001, 296: 183-191.

DOI: 10.1016/s0022-3115(01)00566-9

Google Scholar

[5] Lee E H, Hunn J D, Byun T S et al. Effects of helium on radiation-induced defect microstructure in austenitic stainless steel [J]. J. Nucl. Mater, 2000, 280: 18-24.

DOI: 10.1016/s0022-3115(00)00038-6

Google Scholar

[6] QIAO J S,HUANG Y N,XIAO X et al.Microstructural evolution of CLAM steel upon high energy electron irradiation at 450 [J] .Journal of University of Science and Technology Beijing, 2009, 31(7): 842-847.

Google Scholar

[7] KOHON Y, KOHYAMA A, HIROSE T. Mechanical property changes of low activation ferritic/ martensitic steels after neutrion irradiation [J]. Journal of Nuclear Materials, 1999, 271/272: 145.

DOI: 10.1016/s0022-3115(98)00735-1

Google Scholar

[8] WAKAI E, KIKUCHI K, YAMAMOTO S. Swelling behavior of F82H steel irradiated by triple/dual iron beams [J]. Journal of Nuclear Materials, 2003, 318: 267.

DOI: 10.1016/s0022-3115(03)00122-3

Google Scholar

[9] ZU X T,ZHU S,WANG L M et al.Effect of 2MeV proton radiation on the microstructure in Zircaloy 4 [J] .Nuclear Power Engineering, 2004, 25 (l): 50-53.

Google Scholar

[10] WANG Z G.Simulation of radiation effects in structural materials of reactors using high-energy heavy-ion irradiations [J] .Nuclear Physics Review, 2006, 23(2): 155-160.

Google Scholar

[11] LI Q,HUANG Q Y,YU J N et al.Surface analysis of CLAM steel, EUROFER97 steel and W irradiated in HT-7 Tokamak [J] .Chinese Journal of Nuclear Science and Engineering, 2004, 24 (1): 157.

Google Scholar

[12] Hohenberg P, Kohn W. Phys. Rev [J]. 1964, B13: 864.

Google Scholar

[13] ZHAO F,WAN K B,QIAO J S et al.The microstructure and mechanical properties of China low activation martensitic steel [J] .Chinese Journal of Nuclear Science and Engineering, 2007, 27(1): 59-63.

Google Scholar

[14] Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application [J]. J. Nucl. Mater, 1996, 223: 138-147.

DOI: 10.1016/s0022-3115(96)00327-3

Google Scholar

[15] ZHENG L,JIANG C B,SHANG J X et al.Calculating elastic constants of Fe-based cubic magnetic material using first principle [J] .ACTA PHYSICA SINICA, 2007, 56(3): 1532-1537.

DOI: 10.7498/aps.56.1532

Google Scholar

[16] VOIGT W. Uber die Beziehung zwischen den beiden ELasticitatsconstanten isotroper Korper [J]. Annalen der Physik, 1889, 38: 573-587.

DOI: 10.1002/andp.18892741206

Google Scholar

[17] REUSS A. Berechnung der Fliebgrenze von Mischkristallen auf Grupd der Plastizitatsbendingung fur Einkristalle [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9: 49-58.

DOI: 10.1002/zamm.19290090104

Google Scholar

[18] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65: 349-354.

DOI: 10.1088/0370-1298/65/5/307

Google Scholar

[19] HILL R. Elastic properties of reinforced solids: Some theoretical principles [J]. Journal of the Mechanics and Physics of Solids, 1963, 11: 357-372.

DOI: 10.1016/0022-5096(63)90036-x

Google Scholar

[20] KITTEL C, MCEUEN P. Introduction to solid state physic [M]. Wiley New York, (1996).

Google Scholar