Study on HPAM Biodegradation in the Wastewater of an Oilfield

Article Preview

Abstract:

The present paper studies the biodegradability of partially hydrolyzed polyacrylamide (HPAM) resulting from the waste water of an oil field after carrying out chemically based oil recovery methods. Three aerobic bacteria strains, PM-1, PM-2, PM-3 and PM-4 were isolated from the wastewater. The results indicated that PM-2, PM-3 and PM-4 had better degradability on HPAM. PM-4 showed antagonism to two other strains, whereas PM-2 and PM-3 showed synergetic effects. Primary optimized HPAM degradation conditions of mixed PM-2 and PM-3 were 35 °C ~ 45 °C of degradation temperature and 5.5~7.5 of pH. The mixed PM-2 and PM-3 showed alternative in different media and their different growth stage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

640-644

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Chen, H. Jiang, X. Bai and W. Zheng: J. Ind. Eng. Chem. Vol. 19 (2013), pp.450-457.

Google Scholar

[2] D.A.Z. Wever, F. Picchioni and A.A. Broekhuis: Prog. Polym. Sci. Vol. 36 (2011), pp.1558-1628.

Google Scholar

[3] B.Y. Jamaloei, K. Asghari and R. Kharrat: J. Pet. Sci. Eng., Vol. 90–91(2012), pp.48-55.

Google Scholar

[4] M.T. Bao, Q.G. Chen, Y.M. Li and G.C. Jiang: J. Hazard. Mater. Vol. 184 (2010), pp.105-110.

Google Scholar

[5] C.F. Han, D.P. Li, and X. M Wang: Chin. J. Appl. Environ. Biol. Vol. 11 (2005), pp.648-650. (Chinese).

Google Scholar

[6] Q.X. Wen, Z.Q. Chen, Y. Zhao, H.C. Zhang and Y. J Feng: J. Hazard. Mater. Vol. 175 (2010), p.955–959.

Google Scholar

[7] Y.L. Zhan, S.H. Guo, and G.X. Yan: Poly. Bull. Iss. 2 (2004), pp.70-75. (Chinese).

Google Scholar

[8] A.S. Kuperman and J. Pharmacol: Exp. Ther. Vol. 123 (1958), pp.182-192.

Google Scholar

[9] R.W. Tyl, and H.A. Friedman: Reprod. Toxicol. Vol. 17 (2003), pp.1-13.

Google Scholar

[10] Y.H. She, L.G. Zhou, H.J. Liu, J.Z. Wang, F. Zhang, X.Q. Li, and H.Y. Zhang: Ecol. Sci. Vol. 24 (2005), pp.344-346. (Chinese).

Google Scholar

[11] S. Magdaliniuk, J.C. Block, C. Leyval, J.Y. Bottero, G. Villemin and M. Babut: Water Sci. Technol. Vol. 31 (1995), pp.85-94.

DOI: 10.2166/wst.1995.0020

Google Scholar

[12] N. Kunichika and K. Shinichi: J Ferment. Bioengin. Vol. 80 (1995), p.418–420.

Google Scholar

[13] P.J. Holliman, J. A. Clark, J. C. Williamson, and D. L. Jones: Sci. Total Environ. Vol. 336(2005), pp.13-24.

Google Scholar

[14] J.L. Kay-Shoemake, M.E. Watwood, R.E. Sojka and R.D. Lentz: Soil Boil. Biochem. Vol. 30(1998), pp.1647-1654.

DOI: 10.1016/s0038-0717(97)00251-4

Google Scholar

[15] F. Huang, H.X. Fan, Z.H. Dong and L.M. Xu: Pet. Proc. Petrochem. Vol. 30 (1999), pp.33-36. (Chinese).

Google Scholar

[16] M. T. Bao, K. J. Luo, X. L. Geng, H. F. Wang, S. X. Guo, and X. M. Li: Oilfield Chem. Vol. 24 (2007), pp.188-192. (Chinese).

Google Scholar

[17] J.Q. Liu, M.T. Bao, H.F. Wang, S.X. Guo and X.M. Li: J. Southwest Pet. Univer. Vol. 29(2007), pp.110-113. (Chinese).

Google Scholar

[18] Y. L. Yao, Z. M. Lv, H. Min, Z. H. Lv and H. P. Jiao: Bioresour. Technol. Vol. 100(2009), pp.2762-2769.

Google Scholar