Dynamic Mechanical Properties of a Novel Structural Radar Absorbing Materials

Article Preview

Abstract:

A novel structural radar absorbing materials (SRAM), which give the new absorbing microwaves function to the normal resin-base composites, were prepared. The dynamic compressive tests of SRAM were carried out along both in-plane and normal plane directions of composites by means of the Split Hopkinson Pressure Bar (SHPB). In compressive test along in-plane direction, failure happened at the interface between fiber and matrix. Fracture mode and mechanism was proposed to explain these results. The adding of magnetic absorbing particles resulted in the deterioration of the compressive properties. But there was no obvious decrease on compressive strength of SRAM with the radar absorbing properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

771-774

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. Stonier: SAMPE J. Vol. 27(1991), p.9.

Google Scholar

[2] M. S. Cao, X. L. Shi, X. Y. Fang, Z. L. Hou, H. B. Jin, W. Zhou and Y. J. Chen: Appl. Phys. Lett. Vol. 91 (2007), p.203110.

Google Scholar

[3] X. L. Shi, J. Yuan, W. Zhou, J. L. Rong and M. S. Cao: Chin. Phys. Lett. Vol. 24 (2007), p.2994.

Google Scholar

[4] F. D. Paul: Microwave J. Vol. 11 (1993), p.88.

Google Scholar

[5] M. S. Cao, B. Wang, Q. Li, J. Yuan, G. Xu, S. Qin and X. Fang: Mater. Design Vol. 19 (1998), p.113.

Google Scholar

[6] M. S. Cao, J. Zhu and J. Yuan: Mater. Design Vol. 22 (2002), p.557.

Google Scholar

[7] Z. H. Peng, M. S. Cao, J. Yuan and G. Xiao: Mater. Design Vol. 25 (2004), p.379.

Google Scholar

[8] J. Yuan, G. Xiao and M. S. Cao: Mater. Design Vol. 27 (2006), p.45.

Google Scholar

[9] K. Y. Park, S. E. Lee, C. G. Kim and J. H. Han: Compos. Sci. Technol. Vol. 66 (2006), p.576.

Google Scholar

[10] J. Yang, Z. M. Shen and Z. B. Hao: Carbon Vol. 42 (2004), p.1882.

Google Scholar

[11] J. H. Oh, K. S. Oh, C. G. Kim and C. S. Hong: Compos. Part. B-Eng. Vol. 35 (2004), p.49.

Google Scholar

[12] W. S. Chin and D. G. Lee: Compos. Struct. Vol. 74 (2006), p.153.

Google Scholar

[13] M. S. Cao, W. Zhou, X. L. Shi and Y. J. Chen: Appl. Phys. Lett. Vol. 91 (2007), p.021912.

Google Scholar

[14] S. S. Pang, G. Q. Li, J. E. Helms and S. I. Ibekwe: Compos. Part. B-Eng. Vol. 32 (2001), p.521.

Google Scholar

[15] M. Hassan, A. M. Wahid, H. Anwarul, T. Sherida, M. Hisham and J. Shaik: Compos. Struct. Vol. 50 (2000), p.279.

Google Scholar

[16] Z. H. Li and L. John: Compos. Sci. Technol. Vol. 59 (1999), p.1097.

Google Scholar

[17] Z. G. Zhou, B. Wang and Y. G. Sun: Int. J. Solids. Struct. Vol. 40 (2003), p.747.

Google Scholar

[18] S. W. Park, M. Zhou and D. R. Veazie: J. Compos. Mater. Vol. 34 (2000), p.879.

Google Scholar

[19] S. K. Akhtar, U. C. Ozgen and C. Prabhakaran: Int. J. Plasticity Vol. 18 (2002), p.1337.

Google Scholar

[20] Z. G. Zhou and B. Wang: Int. J. Eng. Sci. Vol. 40 (2002), p.303.

Google Scholar

[21] R. O. Ochola, K. Marcus, G. N. Nurick and T. Franz: Compos. Struct. Vol. 63 (2004), p.455.

Google Scholar

[22] W. Zhou, M. S. Cao, H. B. Jin, Y. L. Lei and J. L. Rong: Key Eng. Mater. Vol. 324 (2006), p.1237.

Google Scholar

[23] A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis and D. P. Papapostolou: Compos. Struct. Vol. 69 (2005), p.407.

Google Scholar

[24] Z. G. Zhou and L. Z. Wu: Int. J. Eng. Sci. Vol. 44 (2006), p.1366.

Google Scholar