[1]
T. Heimann, H.P. Meinzer, Statistical shape models for 3D medical image segmentation: A review, Med Image Anal. 13(2009) 543-563.
DOI: 10.1016/j.media.2009.05.004
Google Scholar
[2]
C. Brechbuhler, G. Gerig, O. Kubler, Parameterization of closed surfaces for 3-D shape-description, Comput Vis Image Und. 61(1995) 154-170.
Google Scholar
[3]
R.H. Davies, C.J. Twining, T.F. Cootes, J.C. Waterton, C.J. Taylor, A minimum description length approach to statistical shape modeling A-8565-2008, Ieee T Med Imaging. 21(2002) 525-537.
DOI: 10.1109/tmi.2002.1009388
Google Scholar
[4]
M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, MATHEMATICS AND VISUALIZATION, SPRINGER-VERLAG BERLIN, BERLIN, 2005, pp.157-186.
DOI: 10.1007/3-540-26808-1_9
Google Scholar
[5]
R.H. Davies, C.J. Twining, C.J. Taylor, Consistent spherical parameterisation for statistical shape modelling, IEEE International Symposium on Biomedical Imaging, IEEE, NEW YORK, 2006, pp.1388-1391.
DOI: 10.1109/isbi.2006.1625186
Google Scholar
[6]
S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, Conformal surface parameterization for texture mapping, Ieee T Vis Comput Gr. 6(2000) 181-189.
DOI: 10.1109/2945.856998
Google Scholar
[7]
M. Isenburg, S. Gumhold, C. Gotsman, Connectivity shapes, Proceedings Visualization 2001 (Cat. No. 01CH37269). (2001) 135-552.
DOI: 10.1109/visual.2001.964504
Google Scholar
[8]
S. Saba, I. Yavneh, C. Gotsman, A. Sheffer, Practical spherical embedding of manifold triangle meshes, International Conference on Shape Modeling and Applications, Proceedings. (2005) 256-265.
DOI: 10.1109/smi.2005.32
Google Scholar
[9]
J.P. Hu, X.P. Liu, Z.X. Su, X.Q. Shi, F.S. Liu, A spherical parameterization approach based on symmetry analysis of triangular meshes, JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A. 10(2009) 1009-1017.
DOI: 10.1631/jzus.a0820728
Google Scholar
[10]
M. Alexa, Merging polyhedral shapes with scattered features, Visual Comput. 16(2000) 26-37.
DOI: 10.1007/pl00007211
Google Scholar
[11]
C. Gotsman, X.F. Gu, A. Sheffer, Fundamentals of spherical parameterization for 3D meshes, Acm T Graphic. 22(2003) 358-363.
DOI: 10.1145/882262.882276
Google Scholar
[12]
E. Praun, H. Hoppe, Spherical parametrization and remeshing, Acm T Graphic. 22(2003) 340-349.
DOI: 10.1145/882262.882274
Google Scholar
[13]
A. Shapiro, A. Tal, Polyhedron realization for shape transformation, Visual Comput. 14(1998) 429-444.
DOI: 10.1007/s003710050153
Google Scholar
[14]
R. Zayer, C. Rossl, H.P. Seidel, Curvilinear spherical parameterization, IEEE International Conference on Shape Modeling and Applications 2006. (2006) 8.
DOI: 10.1109/smi.2006.9
Google Scholar
[15]
L. Shen, F. Makedon, Spherical mapping for processing of 3D closed surfaces, Image Vision Comput. 24(2006) 743-761.
DOI: 10.1016/j.imavis.2006.01.011
Google Scholar
[16]
L. Shen, H. Farid, M.A. McPeek, MODELING THREE-DIMENSIONAL MORPHOLOGICAL STRUCTURES USING SPHERICAL HARMONICS, Evolution. 63(2009) 1003-1016.
DOI: 10.1111/j.1558-5646.2008.00557.x
Google Scholar
[17]
G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, J Parallel Distr Com. 48(1998) 96-129.
DOI: 10.1006/jpdc.1997.1404
Google Scholar
[18]
M.S. Floater, Mean value coordinates, Comput Aided Geom D. 20(2003) 19-27.
Google Scholar
[19]
P.V. Sander, J. Snyder, S.J. Gortler, H. Hoppe, Texture mapping progressive meshes, COMPUTER GRAPHICS, ASSOC COMPUTING MACHINERY, NEW YORK, 2001, pp.409-416.
DOI: 10.1145/383259.383307
Google Scholar
[20]
H. Hoppe, Progressive meshes, Computer Graphics Proceedings. SIGGRAPH '96. (1996) 99-108.
Google Scholar
[21]
M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, Computer Graphics Proceedings, SIGGRAPH 97. (1997) 209-216.
DOI: 10.1145/258734.258849
Google Scholar
[22]
M. Quicken, C. Brechbuhler, J. Hug, H. Blattmann, G. Szekely, Parameterization of closed surfaces for parametric surface description, CVPR '2000: IEEE Conference on Computer Vision and Pattern Recognition, June 13, 2000 - June 15, 2000, IEEE, Hilton Head Island, SC, USA, 2000, pp.354-360.
DOI: 10.1109/cvpr.2000.855840
Google Scholar
[23]
A.M. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh (Reprinted from the Journal of Computational Physics, vol 1, pg 149-172, 1966), J Comput Phys. 135(1997) 128-138.
DOI: 10.1006/jcph.1997.5698
Google Scholar
[24]
N. Aspert, D. Santa-Cruz, T. Ebrahimi, MESH: measuring errors between surfaces using the Hausdorff distance, Proceedings 2002 IEEE International Conference on Multimedia and Expo (Cat. No. 02TH8604). (2002) 705-708.
DOI: 10.1109/icme.2002.1035879
Google Scholar
[25]
L. Shen, H. Huang, F. Makedon, A.J. Saykin, Efficient registration of 3D SPHARM surfaces, Fourth Canadian Conference on Computer and Robot Vision, Proceedings. (2007) 81-88.
DOI: 10.1109/crv.2007.26
Google Scholar