Evaluation of Spherical Parameterization Methods for Three-Dimensional Reconstruction of Medical Images

Article Preview

Abstract:

The spherical parameterization is important for the correspondence problem that is a major part of statistical shape modelling for the reconstruction of patient-specific 3D models from medical images. In this paper, we present comparative studies of five common spherical mapping methods applied to the femur and tibia models: the Issenburg et al. method, the Alexa method, the Saba et al. method, the Praun et al. method and the Shen et al. method. These methods are evaluated using three sets of measures: distortion property, geometric error and distance to standard landmarks. Results show that the Praun et al. method performs better than other methods while the Shen et al. method can be regarded as the most reliable one for providing an acceptable correspondence result. We suggest that the area preserving property can be used as a sufficient condition while the angle preserving property is not important when choosing a spherical mapping method for correspondence application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1342-1349

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Heimann, H.P. Meinzer, Statistical shape models for 3D medical image segmentation: A review, Med Image Anal. 13(2009) 543-563.

DOI: 10.1016/j.media.2009.05.004

Google Scholar

[2] C. Brechbuhler, G. Gerig, O. Kubler, Parameterization of closed surfaces for 3-D shape-description, Comput Vis Image Und. 61(1995) 154-170.

Google Scholar

[3] R.H. Davies, C.J. Twining, T.F. Cootes, J.C. Waterton, C.J. Taylor, A minimum description length approach to statistical shape modeling A-8565-2008, Ieee T Med Imaging. 21(2002) 525-537.

DOI: 10.1109/tmi.2002.1009388

Google Scholar

[4] M.S. Floater, K. Hormann, Surface parameterization: a tutorial and survey, MATHEMATICS AND VISUALIZATION, SPRINGER-VERLAG BERLIN, BERLIN, 2005, pp.157-186.

DOI: 10.1007/3-540-26808-1_9

Google Scholar

[5] R.H. Davies, C.J. Twining, C.J. Taylor, Consistent spherical parameterisation for statistical shape modelling, IEEE International Symposium on Biomedical Imaging, IEEE, NEW YORK, 2006, pp.1388-1391.

DOI: 10.1109/isbi.2006.1625186

Google Scholar

[6] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, Conformal surface parameterization for texture mapping, Ieee T Vis Comput Gr. 6(2000) 181-189.

DOI: 10.1109/2945.856998

Google Scholar

[7] M. Isenburg, S. Gumhold, C. Gotsman, Connectivity shapes, Proceedings Visualization 2001 (Cat. No. 01CH37269). (2001) 135-552.

DOI: 10.1109/visual.2001.964504

Google Scholar

[8] S. Saba, I. Yavneh, C. Gotsman, A. Sheffer, Practical spherical embedding of manifold triangle meshes, International Conference on Shape Modeling and Applications, Proceedings. (2005) 256-265.

DOI: 10.1109/smi.2005.32

Google Scholar

[9] J.P. Hu, X.P. Liu, Z.X. Su, X.Q. Shi, F.S. Liu, A spherical parameterization approach based on symmetry analysis of triangular meshes, JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A. 10(2009) 1009-1017.

DOI: 10.1631/jzus.a0820728

Google Scholar

[10] M. Alexa, Merging polyhedral shapes with scattered features, Visual Comput. 16(2000) 26-37.

DOI: 10.1007/pl00007211

Google Scholar

[11] C. Gotsman, X.F. Gu, A. Sheffer, Fundamentals of spherical parameterization for 3D meshes, Acm T Graphic. 22(2003) 358-363.

DOI: 10.1145/882262.882276

Google Scholar

[12] E. Praun, H. Hoppe, Spherical parametrization and remeshing, Acm T Graphic. 22(2003) 340-349.

DOI: 10.1145/882262.882274

Google Scholar

[13] A. Shapiro, A. Tal, Polyhedron realization for shape transformation, Visual Comput. 14(1998) 429-444.

DOI: 10.1007/s003710050153

Google Scholar

[14] R. Zayer, C. Rossl, H.P. Seidel, Curvilinear spherical parameterization, IEEE International Conference on Shape Modeling and Applications 2006. (2006) 8.

DOI: 10.1109/smi.2006.9

Google Scholar

[15] L. Shen, F. Makedon, Spherical mapping for processing of 3D closed surfaces, Image Vision Comput. 24(2006) 743-761.

DOI: 10.1016/j.imavis.2006.01.011

Google Scholar

[16] L. Shen, H. Farid, M.A. McPeek, MODELING THREE-DIMENSIONAL MORPHOLOGICAL STRUCTURES USING SPHERICAL HARMONICS, Evolution. 63(2009) 1003-1016.

DOI: 10.1111/j.1558-5646.2008.00557.x

Google Scholar

[17] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, J Parallel Distr Com. 48(1998) 96-129.

DOI: 10.1006/jpdc.1997.1404

Google Scholar

[18] M.S. Floater, Mean value coordinates, Comput Aided Geom D. 20(2003) 19-27.

Google Scholar

[19] P.V. Sander, J. Snyder, S.J. Gortler, H. Hoppe, Texture mapping progressive meshes, COMPUTER GRAPHICS, ASSOC COMPUTING MACHINERY, NEW YORK, 2001, pp.409-416.

DOI: 10.1145/383259.383307

Google Scholar

[20] H. Hoppe, Progressive meshes, Computer Graphics Proceedings. SIGGRAPH '96. (1996) 99-108.

Google Scholar

[21] M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, Computer Graphics Proceedings, SIGGRAPH 97. (1997) 209-216.

DOI: 10.1145/258734.258849

Google Scholar

[22] M. Quicken, C. Brechbuhler, J. Hug, H. Blattmann, G. Szekely, Parameterization of closed surfaces for parametric surface description, CVPR '2000: IEEE Conference on Computer Vision and Pattern Recognition, June 13, 2000 - June 15, 2000, IEEE, Hilton Head Island, SC, USA, 2000, pp.354-360.

DOI: 10.1109/cvpr.2000.855840

Google Scholar

[23] A.M. Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh (Reprinted from the Journal of Computational Physics, vol 1, pg 149-172, 1966), J Comput Phys. 135(1997) 128-138.

DOI: 10.1006/jcph.1997.5698

Google Scholar

[24] N. Aspert, D. Santa-Cruz, T. Ebrahimi, MESH: measuring errors between surfaces using the Hausdorff distance, Proceedings 2002 IEEE International Conference on Multimedia and Expo (Cat. No. 02TH8604). (2002) 705-708.

DOI: 10.1109/icme.2002.1035879

Google Scholar

[25] L. Shen, H. Huang, F. Makedon, A.J. Saykin, Efficient registration of 3D SPHARM surfaces, Fourth Canadian Conference on Computer and Robot Vision, Proceedings. (2007) 81-88.

DOI: 10.1109/crv.2007.26

Google Scholar