Phase Transition Behaviors and Thermal Conductivity of Ge Doped Sb2Te Thin Films for Phase Change Random Access Memory

Article Preview

Abstract:

The Ge doped Sb2Te thin films (Ge2Sb2Te5, Ge0.15Sb2Te and Ge0.61Sb2Te) were deposited by magnetron co-sputtering using Ge and Sb2Te targets. Ge doping effect on the phase transition behaviors and thermal conductivity of the composite films was investigated. Ge0.61Sb2Te thin films have higher crystallization temperature (~200°C), larger crystallization activation energy (~3.28 eV) , better data retention (~120.8 °Cfor 10 years) and lower thermal conductivity (~0.23 W/mK). Ge0.61Sb2Te thin films is considered to be a promising storage medium for phase change random access memory due to its better thermal stability and lower power consumption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-31

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Wuttig and N. Yamada: Nature Materials Vol. 6 (2007) p.824.

Google Scholar

[2] M. Wuttig and C. Steimer: Appl. Phys. A Vol. 87 (2007) p.411.

Google Scholar

[3] S. Privitera, E. Rimini and R. Zonca: Appl. Phys. Lett. Vol. 85 (2004) p.3044.

Google Scholar

[4] C. W. Jeong, S. J. Ahn, Y. N. Hwang, Y. J. Song, J. H. Oh, S. Y. Lee, S. H. Lee, K. C. Ryoo, J. H. Park, J. M. Shin, F. Yeung, W. C. Jeong, J. I. Kim, G. H. Koh, G. T. Jeong, H. S. Jeong and K. Kim: Jpn. J. Appl. Phys. Vol. 45 (2006) p.3233.

DOI: 10.1143/jjap.45.3233

Google Scholar

[5] RamanathaswamyPandian, Bart J. Kooiand Jeff Th. M. De Hosson: J. Appl. Phys. Vol. 101 (2007) p.053529.

Google Scholar

[6] RamanathaswamyPandian, Bart J. Kooiand Jeff Th. M. De Hosson: J. Appl. Phys., Vol. 100 (2006) p.123511.

Google Scholar

[7] O. W. Kading, H. Skurk and K. E. Goodson: Appl. Phys. Lett. Vol. 65 (1994) p.1629.

Google Scholar

[8] S. Bai, Z. Tang, Z. Huang and J. Yu: IEEE T. Ind. Electron. Vol. 56 (2009) p.3238.

Google Scholar

[9] M. G. Burzo, P. L. Komarov and P. E. Raad: Microelect. J. Vol. 33 (2002) p.697.

Google Scholar

[10] X. Yu and X. Liang: J. Appl. Phys. Vol. 103 (2008) p.043707.

Google Scholar