[1]
X. Wang, J. Zhuang, Q. Peng, Y.D. Li. A general strategy for nanocrystal synthesis. Nature. 437 ( 2005) 121-124.
DOI: 10.1038/nature03968
Google Scholar
[2]
P.G. Bruce, B. Scrosati, J.M. Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47 (2008) 2930-2946.
DOI: 10.1002/anie.200702505
Google Scholar
[3]
F. Jiao, P.G. Bruce. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19 (2007) 657-660.
DOI: 10.1002/adma.200602499
Google Scholar
[4]
J.Y. Luo, J.J. Zhang, Y.Y. Xia. Highly electrochemical reaction of lithium in the ordered mesoporsus β-MnO2. Chem. Mater. 18 (2006) 5618-5623.
Google Scholar
[5]
Y.J. Jia, J. Xu, L.H. Zhou, H.L. Liu, Y. Hu. A simple one step approach to preparation of γ-MnOOH multipods and β-MnO2 nanorods. Mater. Lett. 62 (2008) 1336-1338.
DOI: 10.1016/j.matlet.2007.08.041
Google Scholar
[6]
H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 9 (2008) 2664-2668.
DOI: 10.1021/nl800925j
Google Scholar
[7]
N. Chandra, S. Bhasin, M. Sharma, D. Pal. A room temperature process for making Mn2O3 nano-particles and γ-MnOOH nano-rods. Mater. Lett. 61 (2007) 3728-3732.
DOI: 10.1016/j.matlet.2006.12.024
Google Scholar
[8]
E. Hosono, M. Ichihara, H. S Zhou. Fabrication of MnOOH nanorods on a substrate in an oxygen bubbled solution with superhydrophobic properties. Nanotechnology 19 (2008) 395605(5pp).
DOI: 10.1088/0957-4484/19/39/395605
Google Scholar
[9]
S.A. Kirillov, V.S. Aleksandrova, T.V. Lisnycha, D.I. Dzanashvili, S.A. Khainakov, J.R. GarcÍa, N.M. Visloguzova, O.I. Pendelyuk. Oxidation of synthetic hausmannite (Mn3O4) to manganite (MnOOH). J. Mol. Struct. 928 (2009) 89-94.
DOI: 10.1016/j.molstruc.2009.03.018
Google Scholar
[10]
D.E. Zhang, Q. Xie, A.M. Chen, M.Y. Wang, X.B. Zhang, S.Z. Li, A.L. Ying, G.Q. Han, G.Y. Xu, Z.W. Tong. Fabrication and characterisation of MnOOH and beta-MnO2 nanorods with rectangular cross-sections. J. Exp. Nanosci. 8, 1 (2013) 77-83.
DOI: 10.1080/17458080.2011.561444
Google Scholar
[11]
Z.Y. Guo, G.N. Zhu, Z.J. Qiu, Y.G. Wang, Y.Y. Xia High performance Li-O2 battery using gamma-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. Electrochem. Commun. 25 (2012) 26-29.
DOI: 10.1016/j.elecom.2012.09.022
Google Scholar
[12]
L.L. Zhang, X.B. Zhang, Z.L. Wang, J.J. Xu, D. Xu, L.M. Wang. High aspect ratio gamma-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem. Commun. 48, 61 (2012) 7598-7600.
DOI: 10.1039/c2cc33933a
Google Scholar
[13]
Y. Xu, L. Zheng, Y. Xie. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton. T. 39 (2010) 10729-10738.
DOI: 10.1039/c0dt00715c
Google Scholar
[14]
X.M. Lou, X. Z Wu, Y.X. Zhang. Goethite nanorods as anode electrode materiasl for rechargeable Li-ion batteries. Electrochem. Commun. 11 (2009) 1696-1699.
DOI: 10.1016/j.elecom.2009.06.032
Google Scholar
[15]
V. Mark B. Crisostomo, J.K. Ngala, S. Alia, A. Dobley, C. Morein, C.H. Chen, X.F. Shen, S. L. Suib. New synthetic route, characterization, and electrocatalytic activity of nanosized manganite. Chem. Mater. 19 (2007) 1832-1839.
DOI: 10.1021/cm062871z
Google Scholar
[16]
C. Gonzalez, J.I. Gutierrez, J.R. G. Velasco, A. Cid, A. Arranz, J.F. Arranz. Transformations of manganese oxides under different thermal conditions. J. Therm. Anal. 47 (1996) 93-102.
DOI: 10.1007/bf01982689
Google Scholar
[17]
B. Liu, P.S. Thomas, R.P. Williams, S.W. Donne. Thermal characterization of chemically reduced electrolytic manganese dioxide. J. Therm. Anal. Calorim. 80 (2005) 625-629.
DOI: 10.1007/s10973-005-0704-8
Google Scholar