A Study about the Synthesis Characterization and Electrochemical Properties of γ-MnOOH Nanowires

Article Preview

Abstract:

In this paper, manganite (γ-MnOOH) nanowires have been synthesized, using KMnO4 and CTAB as raw materials, by a hydrothermal method at 180°C for 12h. The samples were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscope (SEM),and thermogravimetric analysis (TG) for the information of crystal form, size, d-spacings, morphology and the weight-loss course. The results showed the manganite nanowires diameter range from 15 nm to 150 nm,length range from 5μm to 20 μm. Moreover, the properties of manganite (γ-MnOOH) nanowires as anode materials for Li-ion batteries had been studied. The first-discharge capacity is 1660 mAh g-1 and corresponds to a consumption of about 5.5 moles of Li per mole of MnOOH, which made this material maybe one of the candidates for the negative materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

677-682

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wang, J. Zhuang, Q. Peng, Y.D. Li. A general strategy for nanocrystal synthesis. Nature. 437 ( 2005) 121-124.

DOI: 10.1038/nature03968

Google Scholar

[2] P.G. Bruce, B. Scrosati, J.M. Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47 (2008) 2930-2946.

DOI: 10.1002/anie.200702505

Google Scholar

[3] F. Jiao, P.G. Bruce. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19 (2007) 657-660.

DOI: 10.1002/adma.200602499

Google Scholar

[4] J.Y. Luo, J.J. Zhang, Y.Y. Xia. Highly electrochemical reaction of lithium in the ordered mesoporsus β-MnO2. Chem. Mater. 18 (2006) 5618-5623.

Google Scholar

[5] Y.J. Jia, J. Xu, L.H. Zhou, H.L. Liu, Y. Hu. A simple one step approach to preparation of γ-MnOOH multipods and β-MnO2 nanorods. Mater. Lett. 62 (2008) 1336-1338.

DOI: 10.1016/j.matlet.2007.08.041

Google Scholar

[6] H. Zhang, G.P. Cao, Z.Y. Wang, Y.S. Yang, Z.J. Shi, Z.N. Gu. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 9 (2008) 2664-2668.

DOI: 10.1021/nl800925j

Google Scholar

[7] N. Chandra, S. Bhasin, M. Sharma, D. Pal. A room temperature process for making Mn2O3 nano-particles and γ-MnOOH nano-rods. Mater. Lett. 61 (2007) 3728-3732.

DOI: 10.1016/j.matlet.2006.12.024

Google Scholar

[8] E. Hosono, M. Ichihara, H. S Zhou. Fabrication of MnOOH nanorods on a substrate in an oxygen bubbled solution with superhydrophobic properties. Nanotechnology 19 (2008) 395605(5pp).

DOI: 10.1088/0957-4484/19/39/395605

Google Scholar

[9] S.A. Kirillov, V.S. Aleksandrova, T.V. Lisnycha, D.I. Dzanashvili, S.A. Khainakov, J.R. GarcÍa, N.M. Visloguzova, O.I. Pendelyuk. Oxidation of synthetic hausmannite (Mn3O4) to manganite (MnOOH). J. Mol. Struct. 928 (2009) 89-94.

DOI: 10.1016/j.molstruc.2009.03.018

Google Scholar

[10] D.E. Zhang, Q. Xie, A.M. Chen, M.Y. Wang, X.B. Zhang, S.Z. Li, A.L. Ying, G.Q. Han, G.Y. Xu, Z.W. Tong. Fabrication and characterisation of MnOOH and beta-MnO2 nanorods with rectangular cross-sections. J. Exp. Nanosci. 8, 1 (2013) 77-83.

DOI: 10.1080/17458080.2011.561444

Google Scholar

[11] Z.Y. Guo, G.N. Zhu, Z.J. Qiu, Y.G. Wang, Y.Y. Xia High performance Li-O2 battery using gamma-MnOOH nanorods as a catalyst in an ionic-liquid based electrolyte. Electrochem. Commun. 25 (2012) 26-29.

DOI: 10.1016/j.elecom.2012.09.022

Google Scholar

[12] L.L. Zhang, X.B. Zhang, Z.L. Wang, J.J. Xu, D. Xu, L.M. Wang. High aspect ratio gamma-MnOOH nanowires for high performance rechargeable nonaqueous lithium-oxygen batteries. Chem. Commun. 48, 61 (2012) 7598-7600.

DOI: 10.1039/c2cc33933a

Google Scholar

[13] Y. Xu, L. Zheng, Y. Xie. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton. T. 39 (2010) 10729-10738.

DOI: 10.1039/c0dt00715c

Google Scholar

[14] X.M. Lou, X. Z Wu, Y.X. Zhang. Goethite nanorods as anode electrode materiasl for rechargeable Li-ion batteries. Electrochem. Commun. 11 (2009) 1696-1699.

DOI: 10.1016/j.elecom.2009.06.032

Google Scholar

[15] V. Mark B. Crisostomo, J.K. Ngala, S. Alia, A. Dobley, C. Morein, C.H. Chen, X.F. Shen, S. L. Suib. New synthetic route, characterization, and electrocatalytic activity of nanosized manganite. Chem. Mater. 19 (2007) 1832-1839.

DOI: 10.1021/cm062871z

Google Scholar

[16] C. Gonzalez, J.I. Gutierrez, J.R. G. Velasco, A. Cid, A. Arranz, J.F. Arranz. Transformations of manganese oxides under different thermal conditions. J. Therm. Anal. 47 (1996) 93-102.

DOI: 10.1007/bf01982689

Google Scholar

[17] B. Liu, P.S. Thomas, R.P. Williams, S.W. Donne. Thermal characterization of chemically reduced electrolytic manganese dioxide. J. Therm. Anal. Calorim. 80 (2005) 625-629.

DOI: 10.1007/s10973-005-0704-8

Google Scholar