Flexural Creep Behavior of Composites from Polypropylene and Rubberwood Flour

Article Preview

Abstract:

The effects of plastic grades and composition contents on creep behavior of extruded composites from polypropylene and rubberwood flour were investigated. Virgin polypropylene gave lower creep strain than recycled polypropylene, both in composites and as unfilled plastic. An increase of rubberwood flour content reduced the creep deformation of the composites, both virgin and recycled plastics. Maleic anhydride-grafted polypropylene as a coupling, 5 wt% addition increased the creep strain of the composite materials. Likewise, an addition of 1 wt% ultraviolet (UV) stabilizer content significantly enhanced the creep deformation. The results recommend that the amount of UV stabilizer should be as small as possible to limit its negative effects. Four-element Burger model offered a good fitting on the creep behavior of each composite formulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

736-740

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona and D. Hui: Compos Part B Eng Vol. 40 (2009), pp.655-663.

Google Scholar

[2] C. Homkhiew, T. Ratanawilai and W. Thongruang: Adv Mater Res Vol. 488-489 (2012), pp.495-500.

Google Scholar

[3] A. Dorigato and A. Pegoretti: Polym Int Vol. 59 (2010), pp.719-724.

Google Scholar

[4] S. Y. Lee, H. S. Yang, H. J. Kim, C. S. Jeong, B. S. Lim and J. N. Lee: Compos Struct Vol. 65 (2004), pp.459-469.

Google Scholar

[5] A. J. Nunez, P. C. Sturm, J. M. Kenny, M. I. Aranguren, N. E. Marcovich and M. M. Reboredo: J Appl Polym Sci Vol. 88 (2003), pp.1420-1428.

DOI: 10.1002/app.11738

Google Scholar

[6] C. R. Reddy, A. P. Sardashti and L. C. Simon: Compos Sci Technol Vol. 70 (2010), pp.1674-1680.

Google Scholar

[7] A. Dorigato, A. Pegoretti and J. Kolarik: Polym Compos Vol. 31 (2010), p.1947-(1955).

Google Scholar

[8] K. Banik, J. Karger-Kocsis and T. Abraham: Polym Eng Sci Vol. 48 (2008), pp.941-948.

DOI: 10.1002/pen.21041

Google Scholar

[9] H. Liu, F. Yao, Y. Xu and Q. Wu: Bioresour Technol Vol. 101 (2010), pp.3295-3297.

Google Scholar

[10] S. Tamrakar, R. A. Lopez-Anido, A. Kiziltas and D. J. Gardner: Compos Part A-Appl S Vol. 42 (2011), pp.834-842.

Google Scholar

[11] G. Gong, J. Pyo, A. P. Mathew and K. Oksman: Compos Part A-Appl S Vol. 42 (2011), pp.1275-1282.

Google Scholar

[12] N. E. Marcovich and M. A. Villar: J Appl Polym Sci Vol. 90 (2003), pp.2775-2784.

Google Scholar

[13] C. Homkhiew, T. Ratanawilai and W. Thongruang: J Thermoplast Compos Mater, Epub ahead of print 14 February 2013. DOI: 10. 1177/0892705712475019.

Google Scholar

[14] M. R. Rahman, M. M. Huque, M. N. Islam and M. Hasan: Compos Part A-Appl S Vol. 39 (2008), pp.1739-1747.

Google Scholar

[15] J. Mingyin, X. Ping, Z. Yongsheng and W. Kejian: J Wuhan Univ Technol-Mater Vol. 24 (2009), pp.440-447.

Google Scholar

[16] M. Bengtsson, P. Gatenholm and K. Oksman: Compos Sci Technol Vol. 65 (2005), pp.1468-1479.

Google Scholar

[17] S. Mohanty, S. K. Verma, S. K. Nayak and S. S. Tripathy: J Appl Polym Sci Vol. 94 (2004), pp.1336-1345.

Google Scholar

[18] A. Wechsler and S. Hiziroglu: Build Environ Vol. 42 (2007), pp.2637-2644.

Google Scholar