Optimal Formulation of Recycled Polypropylene/Rubberwood Flour Composites on Hardness Property

Article Preview

Abstract:

Mixture experimental design was applied to determine the optimal mixture for composites between rubberwood flour (RWF) and recycled polypropylene (rPP). Experiments were conducted based on a D-optimal mixture design and analyzed using response surface methodology. Analysis of variance revealed that compositions including rPP, RWF, maleic anhydride grafted polypropylene (MAPP), and ultraviolet (UV) stabilizer significantly affected hardness property. Contour plots of the response surface demonstrated that an increase of RWF content steadily enhanced hardness value, but hardness property sharply decreased with an increase of rPP loading. An addition of the UV stabilizer in the composites showed a slight decrease of the hardness value. This result recommends that amount of UV stabilizer used should be minimized. With this experimental design, the optimal formulation of rPP/RWF composites found was 50.0 wt% rPP, 45.0 wt% RWF, 3.9 wt% MAPP, 0.1 wt% UV stabilizer, and 1.0 wt% Lubricant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

785-790

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Ashori and S. Sheshmani: Bioresour Technol Vol. 101 (2010), pp.4717-4720.

Google Scholar

[2] S. K. Najafi, E. Hamidinia and M. Tajvidi: J Appl Polym Sci Vol. 100 (2006), pp.3641-3645.

DOI: 10.1002/app.23159

Google Scholar

[3] C. Homkhiew, T. Ratanawilai and W. Thongruang: J Thermoplast Compos Mater, Epub ahead of print 14 February 2013. DOI: 10. 1177/0892705712475019.

Google Scholar

[4] Z. A. Khan, S. Kamaruddin and A. N. Siddiquee: Mater Design Vol. 31 (2010), pp.2925-2931.

Google Scholar

[5] T. Ratanawilai, N. Thanawattanasirikul and C. Homkhiew: Sci Asia Vol. 38 (2012), pp.289-294.

Google Scholar

[6] K. B. Adhikary, S. Pang and M. P. Staiger: Compos Part B Eng Vol. 39 (2008), pp.807-815.

Google Scholar

[7] B. Kord: World Appl Sci J Vol. 12 (2011), pp.1632-1634.

Google Scholar

[8] M. S. Jang, J. E. Park and H. Y. Park: Food Sci Biotechnol Vol. 20 (2011), pp.409-417.

Google Scholar

[9] Y. B. Khosrowshahi and A. Salem: Inter J Appl Ceramic Technol Vol. 8 (2011), pp.1334-1343.

Google Scholar

[10] R. C. S. John: J Quali Technol Vol. 16 (1984), pp.81-96.

Google Scholar

[11] D. C. Montgomery: Design and analysis of experiments, 7 ed: John Wiley & Sons, Inc., (2009).

Google Scholar

[12] M. Amini, H. Younesi, N. Bahramifar, A. A. Z. Lorestani and F. Ghorbani: J Hazard Mater Vol. 154 (2008), pp.694-702.

Google Scholar

[13] R. H. Myers: Response surface methodology, 3 ed: John Wiley & Sons, Inc., (2009).

Google Scholar

[14] I. Eren and F. Kaymak-Ertekin: J Food Eng Vol. 79 (2007), pp.344-352.

Google Scholar

[15] M. R. Rahman, M. M. Huque, M. N. Islam and M. Hasan: Compos Part A-Appl S Vol. 39 (2008), pp.1739-1747.

Google Scholar

[16] M. R. Rahman, M. M. Huque, M. N. Islam and M. Hasan: Compos Part A-Appl S Vol. 40 (2009), pp.511-517.

Google Scholar