[1]
R.H. Wagoner, H. Lim, M. -G. Lee, Advanced issues in springback, Int. J. Plast. 45 (2013) 3-20.
Google Scholar
[2]
N. Nanu, G. Brabie, Analytical model for prediction of springback parameters in the case of U stretch–bending process as a function of stresses distribution in the sheet thickness, Int. J. Mec. Sci. 64 (2012) 11-21.
DOI: 10.1016/j.ijmecsci.2012.08.007
Google Scholar
[3]
P. Xue, T.X. Yu, E. Chu, Theoretical prediction of the springback of metal sheets after a double-curvature forming operation, J. Mat. Proc. Tech. 89–90 (1999) 65-71.
DOI: 10.1016/s0924-0136(99)00032-1
Google Scholar
[4]
D. Zhang et al., An analytical model for predicting springback and side wall curl of sheet after U-bending, Comp. Mat. Sci. 38 (2007) 707-715.
DOI: 10.1016/j.commatsci.2006.05.001
Google Scholar
[5]
M.G. Lee et al., Semi-analytic hybrid method to predict springback in the 2D draw bend test, J. Ap. Mech. 74 (2007) 1264-1275.
DOI: 10.1115/1.2745390
Google Scholar
[6]
R. Hill, A Theory of the yielding and plastic flow of anisotropic metals, Proc. Royal Soc. London. Series A. Math. Phys. Sci., 193 (1948) 281-297.
DOI: 10.1098/rspa.1948.0045
Google Scholar
[7]
R. Hill, A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. of Mec. Sci., 35 (1993) 19-25.
Google Scholar
[8]
F. Barlat, et al., Yield function development for aluminum alloy sheets, J. Mec. Ph. Sol., 45 (1997) 1727-1763.
Google Scholar
[9]
F. Barlat, et al., Plane stress yield function for aluminum alloy sheets—part 1: theory. Int. J. Plast., 19 (2003) 1297-1319.
Google Scholar
[10]
Z. Dongjuan, et al., Sheet springback prediction based on non-linear combined hardening rule and Barlat89's yielding function, Comp. Mat. Sci. 38 (2006) 256-262.
DOI: 10.1016/j.commatsci.2006.02.007
Google Scholar
[11]
K. Chung, et al., Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions: Part I: theory and formulation, Int. J. Plast. 21 (2005) 861-882.
DOI: 10.1016/s0749-6419(04)00088-9
Google Scholar
[12]
M.C. Butuc, et al., Analysis of sheet metal formability through isotropic and kinematic hardening models, Eur. J. Mec. - A/Solids. 30 (2011) 532-546.
DOI: 10.1016/j.euromechsol.2011.03.005
Google Scholar
[13]
Advanced high strength steel (AHSS) application guidelines. Version 4. 1. (2009) 338.
Google Scholar
[14]
J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., 5 (1989) 247-302.
DOI: 10.1016/0749-6419(89)90015-6
Google Scholar
[15]
F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, Int. J. Plast. 18 (2002) 661-686.
DOI: 10.1016/s0749-6419(01)00050-x
Google Scholar
[16]
M.S. Aydın, et al., Yield locus evolution and constitutive parameter identification using plane strain tension and tensile tests, J. Mat. Proc. Tech. 211(2011) 1957-(1964).
DOI: 10.1016/j.jmatprotec.2011.06.018
Google Scholar
[17]
H. Haddadi, et al., Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification, Int. J. Plast. 22 (2006) 2226-2271.
DOI: 10.1016/j.ijplas.2006.03.010
Google Scholar
[18]
A. Nasser, et al., Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous Pressure Bulge (VPB) tests, J. Mat. Proc. Tech., 210 (2010).
DOI: 10.1016/j.jmatprotec.2009.10.003
Google Scholar
[19]
F. Barlat, et al., An alternative to kinematic hardening in classical plasticity, Int. J. Plast., 27 (2011) 1309-1327.
Google Scholar
[20]
F. Barlat, et al., Extension of homogeneous anisotropic hardening model to cross-loading with latent effects, Int. J. Plasticity, in press, (2012).
Google Scholar
[21]
B. Chongthairungruang, et al., Experimental and numerical investigation of springback effect for advanced high strength dual phase steel. Mat. & Des. 39 (2012) 318-328.
DOI: 10.1016/j.matdes.2012.02.055
Google Scholar
[22]
J.Y. Lee, et al., An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending, Int. J. Sol. Str. 49 (2012) 3562-3572.
DOI: 10.1016/j.ijsolstr.2012.03.042
Google Scholar
[23]
H. Chalal, S. -G. Racz, and T. Balan, Springback of thick sheet AHSS subject to bending under tension, Int. J. Mec. Sci. 59 (2012) 104-114.
DOI: 10.1016/j.ijmecsci.2012.03.011
Google Scholar
[24]
K. Chung, et al., Numisheet 2011 Benchmark 4: Pre-strain effect on spring-back of 2-D draw bending, in The NUMISHEET 2011 Benchmark Study of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes2011, KAIST PRESS, Seoul, Korea, 2011, pp.173-177.
Google Scholar