Permeable Rice Husk Fibre Shell Mould System

Article Preview

Abstract:

Basically, permeability of ceramic shell mould system play an important role in minimizing the casting defects in most investment casting shell. The mould has to be sufficiently permeable to obtain complete mould filling during casting process. Mould fill can be improved by increasing the open porosity that definitely will increase permeability ceramic shell mould. The elimination of rice husk volatile elements has contributed to the increment of pore structure that provides a great deal of connected pathways through the ceramic shell which directly will increase the permeability of the ceramic shell mould during casting process. Indeed, the rice husk fibers additions increase the permeability after firing by a factor 3 compared to the standard shell mould system (without fiber) that makes its an excellent alternative in producing higher permeable ceramic shell system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-335

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Isobe, Kameshima, Y., Nakjima, A., Okada, K., Hotta, Y, Gas permeability and mechanical properties of porous alumina ceramics with undirectly aligned pores, Journal of the European Ceramic Society, 27(2007) 53-59.

DOI: 10.1016/j.jeurceramsoc.2006.02.030

Google Scholar

[2] S. Jones, Improved Sol Based ceramic mould for the use in investment casting, Ph. D(1993), University Of Birmingham, Egbaston, UK.

Google Scholar

[3] Zawati Harun, David Gethin, Drying(Consolidation) Porous Ceramic By considering the microscopic pore temperature gradient, Applied Mechanics and Materials, 147 (2012) 210-214.

DOI: 10.4028/www.scientific.net/amm.147.210

Google Scholar

[4] M. M. A. Rafique, J. Iqbal, Modeling and simulation of heat transfer phenomena during investment casting, International Journal of Heat and Mass Transfer, 52(2009) 2132-2139.

DOI: 10.1016/j.ijheatmasstransfer.2008.11.007

Google Scholar

[5] S. Amira, D. Dube, R. Tremblay, Method to determine hot permeability and strength of ceramic shell moulds, Journal of Materials Processing Technology, 211(2011) 1336-1340.

DOI: 10.1016/j.jmatprotec.2011.03.002

Google Scholar

[6] Zawati Harun, D.T. Gethin, Drying Simulation of Ceramic Shell Build up Process, Second Asia International Conference on Modelling and Simulation (AMS 2008), 13-15 May, Kuala Lumpur, (2008).

DOI: 10.1109/ams.2008.109

Google Scholar

[7] Zawati Harun, Nazri Mohd Nawi, Mohd Faizal Batcha1and David Gethin, Modeling of Layering Ceramic Shell Mould, Applied Mechanics and Materials. 232 (2012) 548-552.

DOI: 10.4028/www.scientific.net/amm.232.548

Google Scholar

[8] C. Yuan, S. Jones., Investigation of fibre modified ceramic moulds dor investment casting, Journal of the European Ceramic Society, 23(2003) 399-407.

DOI: 10.1016/s0955-2219(02)00153-x

Google Scholar

[9] R. V. Krishnarao, J. Subrahmanyam, T.J. Kumar, Studies on the formation of black particles in rice husk silica ash, Journal of the European Ceramic Society, 21(2000) 99-104.

DOI: 10.1016/s0955-2219(00)00170-9

Google Scholar

[10] Z. Harun, N. H. Kamarudin, N. A. Badarulzaman, Shell mould composite with rice husk, Key Engineering Materials, 471-472 (2011) 922-927.

DOI: 10.4028/www.scientific.net/kem.471-472.922

Google Scholar

[11] B. S. Ndazi, S. Karlsson, J.V. Tesha, C.W. Nyahumwa, Chemical and physical modifications of rice husks for use as composite panels, Composites: Part A 38(2007) 925-935.

DOI: 10.1016/j.compositesa.2006.07.004

Google Scholar

[12] A. Bismarck, S. Mishra, T. Lampke, Plant fibers as Reinforcement for Green Composites, in Natural Fibers, Biopolymers and Biocomposites, United States: Taylor & Francis Group, (2005).

DOI: 10.1201/9780203508206.ch2

Google Scholar

[13] A. A. R. M. Mokhtar, A. Hassan, Characterization and treatments of pineapple leaf fibre thermoplastic composite for construction application, Universiti Teknologi Malaysia, Johor, (2007).

Google Scholar

[14] S. L. Favaro, M. S. Lopes, A. G. V. D. C. Neto, R. R. D. Santana, E. Radovanovic, Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites, Composites: Part A, 41(21010) 154-160.

DOI: 10.1016/j.compositesa.2009.09.021

Google Scholar

[15] M. N. Rahman, Ceramic Processing and Sintering, 2nd ed., Taylor & Francis, (2005).

Google Scholar

[16] S. Somiya, F. Aldinger, N. Claussen, R.M. Spriggs, K. Uchino, K. Koumoto, M. Kaneno, Handbook of Advanced Ceramics vol. Mater. Sci., (2003).

DOI: 10.1016/b978-012654640-8/50000-6

Google Scholar

[17] S. Chuayjuljit, Eimnoh, S., Potiyaraj, P., Using Silica from Rice Husk as a Reinforcing Filler in Natural Rubber, J. Sci. Res. Chula. Univ, vol. 26, pp.127-137, (2001).

Google Scholar

[18] Zawati Harun, Nur Farhani Ismail, Nur Azam Badarulzaman , Effect of MgO Additive on Microstructure of Al2O3, Advanced Materials Research, 488 - 489 (2012) 335-339.

DOI: 10.4028/www.scientific.net/amr.488-489.335

Google Scholar