[1]
VAPNIK V N. The Nature of Statistical Learning Theory [M]. New York: Springer Verlag, (1995).
Google Scholar
[2]
C J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
Google Scholar
[3]
KEERTHI S, CHIH J. Asymptotic Behavior of Support Vector Machines with Gaussian Kernel [J]. Neural Compu tation, 2003, 15: 1667-1689.
DOI: 10.1162/089976603321891855
Google Scholar
[4]
SIWEK K, OSOWSKI S, MARKIEWICZ T. Support Vector Machine for Fault Diagnosis in Electrical Circuits[C]/ Proceedings of the 7th Nordic Signal Processing Symposium. Iceland, 2006, 7-9(6): 342-345.
DOI: 10.1109/norsig.2006.275251
Google Scholar
[5]
Hsu CW, Chang CC, Lin CJ. A Practical Guide to Support Vector Classification [EB/OL]. 2007, (03): http: /www. csie. ntu. edu. Tw/cjlin/papers/guide. pdf.
Google Scholar
[6]
Huang CM, Lee YJ, Lin D KJ, et al. Model Selection for Support Vector Machines via Uniform Design[J]. Computational Statistics and Data Analysis, 2007, 52(1): 335 -346.
DOI: 10.1016/j.csda.2007.02.013
Google Scholar
[7]
Hongda Zhang, Xiaodan Wang, Hailong Xu. Pseudo Gradient and Dynamic Step Optimization Algorithm for RBF-SVM Parameter Search [J]. Journal of University of Electronic Science and Technology of China, 2010, 39(4): 523-528(In Chinese).
Google Scholar
[8]
Chunhong Zheng, Licheng Jiao, Ailing Ding. Automatic Model Selection for Support Vector Machines Using Heuristic Genetic Algorithm [J]. Control Theory and Applications, 2006, 23(2): 187-192(In Chinese).
Google Scholar
[9]
Jiangtao Ren, Shaodong Zhao, Senchan Xu, et al. Simultaneous Feature Selection and SVM Parameters Optimization Algorithm Based on Binary PSO[J]. Computer Science, 2007, 34(6): 179-182(In Chinese).
Google Scholar
[10]
Chapelle, V Vapnik. Choosing Multiple Parameters for Support Vector Machines [J]. Machine Learning, 2002, 46: 131-159.
Google Scholar
[11]
V Vapnik,O Chapelle.Bounds on Error Expectation for Support Vector Machines[J].Neural Computation,2000, 12(9): 221-231.
DOI: 10.1162/089976600300015042
Google Scholar
[12]
Xiaoyu Li, Xinfeng Zhang, Lansun Shen. A Selection Means on the Parameter of Radius Basis Function [J]. ACTA ELECTRONICA SINICA, 2005, 33(12A): 2459 -2463(In Chinese).
Google Scholar
[13]
Yaohua Tang, Weimin Guo, Jinghuai Gao. SVM Parameter Selection Algorithm Based on Maximum Kernel Similarity Diversity [J]. PR&AI, 2010, 23(2): 210-215(In Chinese).
Google Scholar
[14]
Biao Liu, Chunping Chen, Huamin Feng, et al. A SVM Parameters Selection Algorithm Based on Fisher Criterion [J]. Journal of Shandong University (Natural Science), 2012, 47(7): 50-55(In Chinese).
Google Scholar
[15]
Scholkopf B, Smola A, Muller K.R. Kernel Principal Component Analysis[C]/In Advances in Kernel Method Support Vector Learning, Cambridge MA: MIT Press, 1999: 327-352.
DOI: 10.7551/mitpress/1130.003.0026
Google Scholar