Stability of Quadratic Functional Equation in Fuzzy Banach Space

Article Preview

Abstract:

In this paper, we investigate the Hyers-Ulam stability of the functional equation ƒ(2x+y)+ƒ(2x-y)=8ƒ(x)+2ƒ(y) in fuzzy Banach space using the fixed point method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1881-1884

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. Ulam, Some questions in analysis: 1, stability, Problems in Modern Mathematics, Science eds., Wiley, New York, 1964 (Chapter VI).

Google Scholar

[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222–224.

Google Scholar

[3] F. Skof, Local properties and approximation of operators, Rendiconti del Seminario Matematico e Fisico di Milano, vol. 53, pp.113-129, (1983).

DOI: 10.1007/bf02924890

Google Scholar

[4] V. Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 4, (2003) 91-96.

Google Scholar

[5] Ji-Hye Kim, The stability of a Quadratic functional equation with the fixe point alternative, Abstract and Applied Analysis, 2009,Art. ID 907167, pp.1-11.

Google Scholar

[6] T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687–705.

Google Scholar

[7] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for the contractions on generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305–309.

DOI: 10.1090/s0002-9904-1968-11933-0

Google Scholar