[1]
S.M. Ulam, Some questions in analysis: 1, stability, Problems in Modern Mathematics, Science eds., Wiley, New York, 1964 (Chapter VI).
Google Scholar
[2]
D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222–224.
Google Scholar
[3]
F. Skof, Local properties and approximation of operators, Rendiconti del Seminario Matematico e Fisico di Milano, vol. 53, pp.113-129, (1983).
DOI: 10.1007/bf02924890
Google Scholar
[4]
V. Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 4, (2003) 91-96.
Google Scholar
[5]
Ji-Hye Kim, The stability of a Quadratic functional equation with the fixe point alternative, Abstract and Applied Analysis, 2009,Art. ID 907167, pp.1-11.
Google Scholar
[6]
T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687–705.
Google Scholar
[7]
J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for the contractions on generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305–309.
DOI: 10.1090/s0002-9904-1968-11933-0
Google Scholar