[1]
M. R. Bayoumi, A. K. Abdellatif, Effect of surface finish on fatigue strength, Engineering Fracture Mechanics 51 (1995), 861-870.
DOI: 10.1016/0013-7944(94)00297-u
Google Scholar
[2]
D. Arola, C. L. Williams, Estimating the fatigue stress concentration factor of machined surfaces, International Journal of Fatigue 24 (2002), 923-930.
DOI: 10.1016/s0142-1123(02)00012-9
Google Scholar
[3]
R. B. Heywood, Designing Against Fatigue, Chapman and Hall LTD, London (1962), 296-316.
Google Scholar
[4]
C. E. Phillips, R. B. Heywood, Size effect in fatigue of plain and notched steel specimens, WEP 65 (1951), 113-124.
Google Scholar
[5]
X-S Wang, X Lu, D-H Wang, Investigation of surface fatigue microcrack growth behavior of cast Mg-Al alloy, Materials Science and Engineering A364 (2004), 11-16.
DOI: 10.1016/j.msea.2003.04.001
Google Scholar
[6]
A. L. Mantle, D. K. Aspinwall, Surface integrity and fatigue life of turned gamma titainium aluminide, Journal of Materials Processing Technology 72 (1997), 413-420.
DOI: 10.1016/s0924-0136(97)00204-5
Google Scholar
[7]
E. Eriksen, The influence of surface roughness on the mechanical strength properties of machined short-fibre-reinforced thermoplastics, Composites Science and Technology 60 (2000), 107-113.
DOI: 10.1016/s0266-3538(99)00102-5
Google Scholar
[8]
Z. F. Yue, Surface roughness evolution under constant amplitude fatigue loading using crystal plasticity, Engineering Fracture Mechanics 72 (2005), 749-757.
DOI: 10.1016/j.engfracmech.2004.06.001
Google Scholar
[9]
Y. Murakami, M. Endo, Effects of defects, inclusion and inhomogeneities on fatigue strength, International Journal of Fatigue 16 (1994), 163-182.
DOI: 10.1016/0142-1123(94)90001-9
Google Scholar
[10]
Metcut research associates, machining data handbook, 3rd edition. Originally published by the machinability data centre, Metcut research associates Inc, Cincinnati, Ohio (1980).
DOI: 10.21236/ada038441
Google Scholar
[11]
A. R. C. Sharman, D. K. Aspinwall, R. C. Dewes, D. Clifton, P. Bowen, The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide, International Journal of Machine Tools & Manufacture 41 (2001), 1681-1685.
DOI: 10.1016/s0890-6955(01)00034-7
Google Scholar
[12]
M. Field, W. P. Koster, J. B. Kohls, R. E. Snider, J. J. Maranchik, Machining of High Strength Steels with Emphasis on Surface Integrity, air force machinability data centre, report no. AFMDC 70-1, Metcut research associates Inc, Cincinnati, Ohio (1970).
Google Scholar
[13]
M. J. Balart, A. Bouzina, L. Edwards, M. E. Fitzpatrick, The onset of tensile stresses in grinding of hardened steels, Material Science and Engineering A367 (2004), 132-142.
DOI: 10.1016/j.msea.2003.10.239
Google Scholar
[14]
W. P. Koster, M. Field, L. J. Fritz, L. R. Gatto, J. F. Kahles, Surface Integrity of Machined Structural Components, air force materials laboratory technical report AFML-TR-70-11, MMP project no. 721-8, Metcut Research Associates Inc, Cincinnati, Ohio, (1970).
Google Scholar
[15]
M. A. S. Torres, H. J. C. Voorwald, An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel, International Journal of Fatigue 24 (2002), 877-886.
DOI: 10.1016/s0142-1123(01)00205-5
Google Scholar
[16]
R. K. Nalla, I. Altenberger, U. Noster, G. Y. Liu, B. Scholtes, R. O. Ritchie, On the influence of mechanical surface treatments – deep rolling and laser shock peening – on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures, Materials Science and Engineering A355 (2003).
DOI: 10.1016/s0921-5093(03)00069-8
Google Scholar