Overlapped Bubbles Recognition in Two-Phase Flow

Article Preview

Abstract:

We presented an algorithm to recognize overlapped bubbles in two-phase flow. We extracted bubble images from gray image by Background subtraction, and then converted them to binaries. Final images were segmented to compare them with the templates of bubble pattern. Finally, we obtained the recognition accuracy to compare their similarities. The recognition rate is to 93% and it is efficient in the field of the machine vision.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-403

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zhang, Z. Liu, H. Zhao. Contour Extraction of Human with Single-pixel Width. Applied Mechanics and Materials, 2010, 20-23: 376-381.

DOI: 10.4028/www.scientific.net/amm.20-23.376

Google Scholar

[2] G. de Leeuw, L. H. Cohen. Measurements of oceanic bubble size distributions. Oceans Engineering for Today's Technology and Tomorrow's Preservation. Proceedings, Brest, France: IEEE: 1994: 694-699.

Google Scholar

[3] I. Leifer, G. de Leeuw, L. H. Cohen. Optical measurement of bubbles: System, design and application. J. Atmos. Oceanic Technol., 2003, 20(9): 1317-1332.

DOI: 10.1175/1520-0426(2003)020<1317:omobsd>2.0.co;2

Google Scholar

[4] I. Leifer, J. Boles. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Marine and Petroleum Geology, 2005, 22: 551-568.

DOI: 10.1016/j.marpetgeo.2004.10.026

Google Scholar

[5] I. Leifer, G. de Leeuw, G. Kunzb, et al. Calibrating optical bubble size by the displaced-mass method. Chemical Engineering Science, 2003, 58: 5211-5216.

DOI: 10.1016/j.ces.2003.08.016

Google Scholar

[6] B. K. P. Horn, B. G. Schunck. Determining optical flow. Artif Intell, 1981, 17(1-3): 185-203.

Google Scholar

[7] D. P. Huttenlocher, et al. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell, 1993, 15(9): 850-863.

DOI: 10.1109/34.232073

Google Scholar

[8] A. M. Tekalp, CUI Zhi-hu, Digital Video Processing. Beijing: Publishing House of Electron and Industry, (1998).

Google Scholar

[9] Y. S. Yao, R. Chllappa. Tracking a dynamic set of feature points. IEEE Trans Image Process, 1995, 4(10): 1382-1395.

DOI: 10.1109/83.465103

Google Scholar

[10] C. F. Olson. Efficient pose clustering using a randomized algorithm. Int J Comput Vision, 1997, 23(2): 131-147.

Google Scholar

[11] M. Kass, A. Witkin, D. Terzopoulos. Snakes: active contour models. Proceedings of 1st International Conference on Computer Vision, IEEE Press, 1987: 259-268.

DOI: 10.1007/bf00133570

Google Scholar

[12] Y. V. Venkatesh, S. Kumar Raja, N. Ramya. Multiple contour extraction from gray-level images using an artificial neural network. IEEE Trans Image Process, 2006, 15(4): 892-899.

DOI: 10.1109/tip.2005.863934

Google Scholar

[13] H. Zhang, L. Du. Human Motion Recognition via Dynamics Decomposition. International Journal of Digital Content Technology and its Applications, 2012, 6(1): 283-290.

DOI: 10.4156/jdcta.vol6.issue1.34

Google Scholar

[14] H. Zhang, Z. Liu, H. Zhao, Q. Wei. Human Motion Classification Based on Global Representation and Conditional Model. Journal of Computer, 2011, 6(10): 2060-(2067).

Google Scholar