[1]
Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, New York (1981).
Google Scholar
[2]
O'Malley, R.E.: Introduction to Singular Perturbation. Academic, New York (1974).
Google Scholar
[3]
Ganji, D.D., Rajabi, A.: Assessment of homotopy–perturbation and perturbation methods in heat radiation equations. Int. Commun. Heat Mass Transfer 33, 391–400 (2006).
DOI: 10.1016/j.icheatmasstransfer.2005.11.001
Google Scholar
[4]
Liu, G.L.: New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique. Conference of 7th Modern Mathematics and Mechanics, Shanghai, p.47–53 (1997).
Google Scholar
[5]
Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 303, 371–380 (1995).
DOI: 10.1016/0020-7462(94)00054-e
Google Scholar
[6]
He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).
Google Scholar
[7]
He, J.H.: A modified perturbation technique depending upon an artificial parameter. Meccanica 35, 299–311 (2000).
Google Scholar
[8]
Barari, A., Omidvar, M., Ghotbi, A.R., Ganji, D.D.: Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Appl. Math. 104, 161–171 (2008).
DOI: 10.1007/s10440-008-9248-9
Google Scholar
[9]
van der Pol, B.: On relaxation-oscillations. Philosophical Mag. 7(2), 978–992 (1926).
Google Scholar
[10]
Buonomo, A.: The periodic solution of van der Pol's equation. SIAM J. Appl. Math. 59(1), 156–171 (1998).
DOI: 10.1137/s0036139997319797
Google Scholar
[11]
Waluya, S.B., van Horssen, W.T.: On the periodic solutions of a generalized non-linear Van der Pol oscillator. J. Sound Vib. 268, 209–215 (2003).
DOI: 10.1016/s0022-460x(03)00251-7
Google Scholar
[12]
Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305, 614–620 (2007).
DOI: 10.1016/j.jsv.2007.04.020
Google Scholar
[13]
Ozis, T., Yıldırım, A.: A note on He's homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos Solit. Fract. 34, 989–991 (2007).
DOI: 10.1016/j.chaos.2006.04.013
Google Scholar
[14]
Lopez, J.L., Abbasbandy, S., Lopez-Ruiz, R.: Formulas for the amplitude of the van der Pol limit cycle through the homotopy analysis method. Scholarly Research Exchange (2009) doi: 10. 3814/2009/854060.
DOI: 10.3814/2009/854060
Google Scholar
[15]
Chen, Y.M., Liu, J.K.: A study of homotopy analysis method for limit cycle of van der Pol equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 1816–1821 (2009).
DOI: 10.1016/j.cnsns.2008.07.010
Google Scholar
[16]
Meirovitch, L.: Fundamentals of vibrations. McGraw Hill, New York (2001).
Google Scholar
[17]
He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solit. Fract. 26, 695–700 (2005).
DOI: 10.1016/j.chaos.2005.03.006
Google Scholar
[18]
He, J.H.: Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350, 87–88 (2006).
DOI: 10.1016/j.physleta.2005.10.005
Google Scholar