Assessment of Perturbation and Homotopy-Perturbation Methods for Solving Nonlinear Oscillator Equations

Article Preview

Abstract:

In this paper, two modified perturbation methods, namely, artificial parameter method (APM) and homotopy perturbation method (HPM) have been successfully implemented to find the solution of van der Pol nonlinear oscillator equation. Different from classical perturbation method, APM and HPM do not require small parameter and therefore, obtained approximate solutions may be uniformly valid for both weak nonlinear systems and strong nonlinear systems. Comparison of the results obtained by the proposed methods reveals that APM and HPM are more effective compared to classical perturbation method and with only a few terms, approximate the exact solution with a fairly reasonable error.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-215

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, New York (1981).

Google Scholar

[2] O'Malley, R.E.: Introduction to Singular Perturbation. Academic, New York (1974).

Google Scholar

[3] Ganji, D.D., Rajabi, A.: Assessment of homotopy–perturbation and perturbation methods in heat radiation equations. Int. Commun. Heat Mass Transfer 33, 391–400 (2006).

DOI: 10.1016/j.icheatmasstransfer.2005.11.001

Google Scholar

[4] Liu, G.L.: New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique. Conference of 7th Modern Mathematics and Mechanics, Shanghai, p.47–53 (1997).

Google Scholar

[5] Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 303, 371–380 (1995).

DOI: 10.1016/0020-7462(94)00054-e

Google Scholar

[6] He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999).

Google Scholar

[7] He, J.H.: A modified perturbation technique depending upon an artificial parameter. Meccanica 35, 299–311 (2000).

Google Scholar

[8] Barari, A., Omidvar, M., Ghotbi, A.R., Ganji, D.D.: Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Appl. Math. 104, 161–171 (2008).

DOI: 10.1007/s10440-008-9248-9

Google Scholar

[9] van der Pol, B.: On relaxation-oscillations. Philosophical Mag. 7(2), 978–992 (1926).

Google Scholar

[10] Buonomo, A.: The periodic solution of van der Pol's equation. SIAM J. Appl. Math. 59(1), 156–171 (1998).

DOI: 10.1137/s0036139997319797

Google Scholar

[11] Waluya, S.B., van Horssen, W.T.: On the periodic solutions of a generalized non-linear Van der Pol oscillator. J. Sound Vib. 268, 209–215 (2003).

DOI: 10.1016/s0022-460x(03)00251-7

Google Scholar

[12] Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305, 614–620 (2007).

DOI: 10.1016/j.jsv.2007.04.020

Google Scholar

[13] Ozis, T., Yıldırım, A.: A note on He's homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos Solit. Fract. 34, 989–991 (2007).

DOI: 10.1016/j.chaos.2006.04.013

Google Scholar

[14] Lopez, J.L., Abbasbandy, S., Lopez-Ruiz, R.: Formulas for the amplitude of the van der Pol limit cycle through the homotopy analysis method. Scholarly Research Exchange (2009) doi: 10. 3814/2009/854060.

DOI: 10.3814/2009/854060

Google Scholar

[15] Chen, Y.M., Liu, J.K.: A study of homotopy analysis method for limit cycle of van der Pol equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 1816–1821 (2009).

DOI: 10.1016/j.cnsns.2008.07.010

Google Scholar

[16] Meirovitch, L.: Fundamentals of vibrations. McGraw Hill, New York (2001).

Google Scholar

[17] He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solit. Fract. 26, 695–700 (2005).

DOI: 10.1016/j.chaos.2005.03.006

Google Scholar

[18] He, J.H.: Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350, 87–88 (2006).

DOI: 10.1016/j.physleta.2005.10.005

Google Scholar