[1]
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proc. of 5th Berkeley Symposium, vol. 1, 1967, pp.281-297.
Google Scholar
[2]
A.K. Jain, Data clustering: 50 years beyond k-means, Pattern Recog. Lett. 31 (2010) 651-666.
DOI: 10.1016/j.patrec.2009.09.011
Google Scholar
[3]
J. Mao, A.K. Jain, A self-organizing network for hyper-ellipsoidal clustering (HEC). IEEE Trans. Neural Networks 7 (January 1996), 16-29.
DOI: 10.1109/72.478389
Google Scholar
[4]
Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer design. IEEE Trans. Comm. 28 (1980) 84-94.
DOI: 10.1109/tcom.1980.1094577
Google Scholar
[5]
H. Kashima, J. Hu, B. Ray, M. Singh, K-means clustering of proportional data using L1 distance, in: Proc. Internat. Conf. on Pattern Recognition, 2008, pp.1-4.
DOI: 10.1109/icpr.2008.4760982
Google Scholar
[6]
A. Banerjee, S. Merugu, I.S. Dhillon, J. Ghosh, Clustering with Bregman divergences, J. Mach. Learn. Res. 6 (2005) 1705-1749.
Google Scholar
[7]
K.L. Wu, M.S. Yang, Alternative c-means clustering algorithms, Pattern Recog. 35 (2002) 2267-2278.
Google Scholar
[8]
Z.X. Huang, Extensions to the k-means algorithm for clustering large data set with categorical values, Data Mining Knowl. Discov. 2 (1998) 283-304.
Google Scholar
[9]
S. Lloyd, Least squares quantization in PCM, Bell Telephone Laboratories Papers, Marray Hill, (1957).
Google Scholar
[10]
D. Pollard, Strong consistency of k-means clustering, Annal. Statistics 9 (1981) 135-140.
Google Scholar
[11]
S.Z. Selim, M.A. Ismail, K-means-type algorithms: a generalized convergence theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Intell. 6 (1999) 81-86.
DOI: 10.1109/tpami.1984.4767478
Google Scholar
[12]
D. Pollard, A central limit theorem for k-means clustering, Ann. Probabil. 10 (1982) 919-926.
Google Scholar
[13]
J. Yu, General c-means clustering model, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1197-1211.
DOI: 10.1109/tpami.2005.160
Google Scholar
[14]
W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Am. Statistical Assoc. 66 (1971) 846-850.
Google Scholar
[15]
E. Anderson, The Irises of the gaspe peninsula, Bull. Am. IRIS Soc. 59 (1935) 2-5.
Google Scholar
[16]
J.C. Bezdek, J.M. Keller, R. Krishnapuram, L.I. Kuncheva, N.R. Pal, Will the Iris data please stand up? IEEE Trans. Fuzzy Syst. 7 (1999) 368-369.
DOI: 10.1109/91.771092
Google Scholar
[17]
K. Pal, N.R. Pal, J.M. Keller, J.C. Bezdek, Relational mountain (density) clustering method and web log analysis, Int. J. Intell. Syst. 20 (2005) 375-392.
DOI: 10.1002/int.20071
Google Scholar
[18]
C.M. Hwang, M.S. Yang, W.L. Hung, M.G. Lee, A similarity measure of intuitionistic fuzzy sets based on Sugeno integral with its application to pattern recognition, Inf. Sci. 189 (2012) 93-109.
DOI: 10.1016/j.ins.2011.11.029
Google Scholar
[19]
M.S. Yang, H.M. Shih, Cluster analysis based on fuzzy relations, Fuzzy Sets Syst. 120 (2001) 197-212.
DOI: 10.1016/s0165-0114(99)00146-3
Google Scholar