Optimal Design of a Speed Reducer

Article Preview

Abstract:

The mathematical model for optimal design of a speed reducer is a generalized geometric programming problem that is non-convex and not easy be globally solved. This paper applies a deterministic approach including convexification strategies and piecewise linearization techniques to globally solve speed reducer design problems. A practical speed reducer design problem is solved to demonstrate that this study obtains a better solution than other methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

327-330

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg. 194 (2005) 3902-3933.

DOI: 10.1016/j.cma.2004.09.007

Google Scholar

[2] M. Jaberipour, E. Khorram, Two improved harmony search algorithms for solving engineering optimization problems, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 3316-3331.

DOI: 10.1016/j.cnsns.2010.01.009

Google Scholar

[3] F.W. Glover, G.A. Kochenberger, Handbook of metaheuristics, Springer, New York, USA, (2003).

Google Scholar

[4] L. Bianchi, M. Dorigo, L.M. Gambardella, W.J. Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Nat. Comput. 8 (2009) 239-287.

DOI: 10.1007/s11047-008-9098-4

Google Scholar

[5] J.K. Kuang, S.S. Rao, L. Chen, Taguchi-aided search method for design optimization of engineering system, Engrg. Optim. 30 (1998) 1-23.

Google Scholar

[6] S. Akhtar, K. Tai, T. Ray, A socio-behavioural simulation model for engineering design optimization, Engrg. Optim. 34 (2002) 341-354.

DOI: 10.1080/03052150212723

Google Scholar

[7] S.S. Rao, Y. Xiong, A Hybrid Genetic algorithm for mixed-discrete design optimization, J. Mech. Design 127 (2005) 1100-1112.

DOI: 10.1115/1.1876436

Google Scholar

[8] L.C. Cagnina, S.C. Esquivel, C.A. Coello Coello,  Solving engineering optimization problems with the simple constrained particle swarm optimizer, Inform. 32 (2008) 319-326.

DOI: 10.1080/0305215x.2010.522707

Google Scholar

[9] S. Tosserams, L. F. P. Etman, J. E. Rooda, An augmented Lagrangian decomposition method for quasi-separable problems in MDO, Struct. Multidiscip. Optim. 34 (2007) 211-227.

DOI: 10.1007/s00158-006-0077-z

Google Scholar

[10] S. Lu, H.M. Kim, A regularized inexact penalty decomposition algorithm formultidisciplinary design optimization problem with complementarity constraints, Transactions of ASME: J. Mech. Design 132 (2010), http: /dx. doi. org/10. 1115/1. 4001206.

DOI: 10.1115/1.4001206

Google Scholar

[11] R. Pörn, I. Harjunkoski, T. Westerlund, Convexification of different classes of non-convex MINLP problems, Comput. Chemical Engrg. 23 (1999) 439-448.

DOI: 10.1016/s0098-1354(98)00305-6

Google Scholar

[12] C.D. Maranas, C.A. Floudas, Global optimization in generalized geometric programming, Comput. Chemical Engrg. 21 (1997) 351-369.

DOI: 10.1016/s0098-1354(96)00282-7

Google Scholar

[13] A. Lundell, J. Westerlund, T. Westerlund, Some transformation techniques with applications in global optimization, J. Global Optim. 43 (2009) 391-405.

DOI: 10.1007/s10898-007-9223-4

Google Scholar

[14] J.F. Tsai, M.H. Lin, An efficient global approach for posynomial geometric programming problems, INFORMS J. Comput. 23 (2011) 483-492.

DOI: 10.1287/ijoc.1100.0403

Google Scholar

[15] M.H. Lin, J.F. Tsai, P.C. Wang, Solving engineering optimization problems by a deterministic global approach, Appl. Math. Info. Sci. 6-3S (2012) 1101-1107.

Google Scholar

[16] C.D. Maranas, C.A. Floudas, Finding all solutions of nonlinearly constrained systems of equations, J. Global Optim. 7 (1995) 143-182.

DOI: 10.1007/bf01097059

Google Scholar

[17] R. Pörn, K.M. Bjork, T. Westerlund, Global solution of optimization problems with signomial parts, Discret. Optim. 5 (2008) 108-120.

DOI: 10.1016/j.disopt.2007.11.005

Google Scholar

[18] T. Westerlund, Some transformation techniques in global optimization, in: L. Liberti, N. Maculan (Eds. ), Global Optimization, from Theory to Implementations, Springer, New York, USA, 2007, pp.45-74.

DOI: 10.1007/0-387-30528-9_3

Google Scholar

[19] J.P. Vielma, G. Nemhauser, Modeling disjunctive constraints with a logarithmic number of binary variables and constraints, Math. Prog. 128 (2011) 49-72.

DOI: 10.1007/s10107-009-0295-4

Google Scholar

[20] LINGO, Release. 11. 0. 2008. Lindo System Inc., Chicago.

Google Scholar