Oriented (100) Electrical Property of BiFeO3/La0.7Sr0.3MnO3 Multilayered Thin Films

Article Preview

Abstract:

We reported the superlattices (SL) thin films of ferroelectric BiFeO3 and ferromagnetic La0.7Sr0.3MnO3 on structure and ferroelectric properties, which fabricate by (radio frequency)-magnetic sputtering. Remarkably, the SL thin film has orientation (100), and the interphases are very distinct. We examined samples by XRD, and Keithley 2400, and the result proves the thin film is SL, which is oriented (001), affected by strain and temperature. And strain affect growing of thin film, and temperature affect electricity property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

270-274

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.E. Roginskaya Y.N. Venevtsev, S.A. Fedulov, G.S. Zhdanov, Kristallografiya, Sov. Phys. Crystallogr. 8 (1964) 490.

Google Scholar

[2] S. Bose, and S.B. Krupanidhi, Appl. Phys. Lett. 90 (2007) 212902.

Google Scholar

[3] V.L. Mathe, K.K. Patankar, R.N. Patil, and C.D. Lokhande, J. Magn. Magn. Mater. 270 (2004) 380.

Google Scholar

[4] X.D. Qi, J.H. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, Appl. Phys. Lett. 86 (2005) 062903.

DOI: 10.1063/1.1862336

Google Scholar

[5] M.M. Kumar, A. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, Phys. Status Solidi A 165 (1998) 137.

Google Scholar

[6] Y.H. Lee, C.S. Liang, J.M. Wu, Electrochem. Solid State Lett. 8 (2005) 55.

Google Scholar

[7] J.G. Wu, J. Wang, J. Appl. Phys. 105 (2009) 124107.

Google Scholar

[8] H.P. Wu, L.Z. Wu, Q. Sun, W.D. Fei, S.Y. Du, Appl. Surf. Sci. 254 (2008) 5492.

Google Scholar

[9] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299 (2003) 1719.

DOI: 10.1126/science.1080615

Google Scholar

[10] V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80 (2002) 1628.

Google Scholar

[11] X.D. Qi, M. Wei, Y. Lin, Q.X. Jia, D. Zhi, J.H. Dho, M.G. Blamire, J.L. MacManus-Dirscoll, Appl. Phys. Lett. 86 (2005) 071913.

DOI: 10.1063/1.1866214

Google Scholar

[12] P. Przyslupski, I. Komissarow, W. Paszkowicz, P. Dluzewski, R. Minikayev, M. Sawicki, PHYS. REV. B , 69 (2004) 134428.

Google Scholar

[13] S. Majumdar, R. Laiho, P. Laukkanen, I. J. Väyrynen, H. S. Majumdar, R. Österbacka, ibid. 89 (2006) 122114.

DOI: 10.1063/1.2356463

Google Scholar

[14] T. F. Zhou, G. Li, N. Y. Wang, B. M. Wang, X. G. Li, Y. Chen, Appl. Phys. Lett. 88 (2006) 232508.

Google Scholar

[15] J. Zhang, Z. Yin, M.S. Zhang, W.C. Chen, Chin. Phys. Let. 18 (2001) 1271.

Google Scholar

[16] O.I. Lebedev, J.F. Hamet, G.V. Tendeloo, V. Beaumont, B. Raveau, J. Appl. Phys. 90 (2001) 5261.

Google Scholar

[17] H.P. Wu, A.P. Liu, L.Z. Wu, S.Y. Du, Appl. Phys. Lett. 93 (2008) 242909.

Google Scholar

[18] J.G. Wu, G.Q. Kang, H.J. Liu, J. Wang, Appl. Phsy. Lett. 94 (2009) 172906.

Google Scholar

[19] T.M. Susan, N.B. Gharb, Appl. Phys. Lett. 88 (2006) 202901.

Google Scholar